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ABSTRACT 

The notion of Morphological Mutations was introduced 
by Larry Polansky, gaining wider popularity with the 
implementation of Spectral Mutation in Tom Erbe’s 
SoundHack. However, until now all implementations 
were outside time.1 Furthermore, the theoretical frame-
work used to date prevented inside time calculation of 
certain mutation processes. This is not a matter of CPU 
demands but of mathematics. This paper discusses an 
implementation of mutation and the modifications to the 
theory that were necessary to handle mutation processes 
interactively inside time. A raft of further extensions to 
existing mutation techniques were developed. 
Experiences in the development process are documented 
and new applications are investigated. 

The implementation presented here runs as a set of 
external objects for the Max/MSP platform, now 
running under both Mac OS and Windows XP. 

1. INTRODUCTION 

The notion of morphological mutations was introduced 
by Polansky in a series of papers beginning in the late 
80's [4][5][7]. In its simplest form, mutation can be 
understood as a kind of cross-fade between two musical 
structures. More complex mutations extend this notion 
dramatically, reaping results ranging from the wonderful 
to the bizarre. Originally applied at the level macro-
events (pitches, intervals, harmonies, durations, etc.). 
The ideas were soon extended to the micro-events: 
direct processing of audio signals at the sample level.  

Previous implementations process mutations 
exclusively outside time [6][7][8]. This paper describes 
a new set of external objects for Max/MSP 
implementing mutation inside time. These objects 
provide a unified set of tools with greater flexibility than 
their forerunners. Additionally, interactive experiments 
in novel configurations as well as time-variant handling 
of mutation parameters not possible in any other 
implementation can now be conveniently built.  

To perform mutations inside time it was necessary to 
develop a new method for controlling “clumping”, an 
important step in certain stochastic mutation algorithms. 
This is discussed in section 5. A new member of the 
mutation family called “Weighted Contour Mutation” 
(WCM) has been developed and will be introduced in 

                                                             
1 The designations inside time and outside time are used throughout 
this paper in preference to the more popular but problematic terms 
“real-time” and “non-real time”. 

below. Finally, several applications of the mutation 
objects will be presented.  

2. OVERVIEW 
(OR: MASTERING MORPHOLOGICAL 

MUTATIONS IN UNDER A MINUTE) 

Mutation can be viewed as starting from two morpholo-
gies: abstract sequences of events, typically represented 
as cardinal values. These morphologies are called 
Source and Target. Both are first processed by a Splitter 
function, dividing Source and Target into mutable and 
immutable components. The archetypal Splitter 
functions will classify scalar data into sign and 
magnitude. For example, Unsigned (Magnitude) 
Mutations can be described as assigning magnitudes to 
the mutable component and sign to the immutable 
component. (See Fig. 1)  

 
Figure 1 Generic Overview of the Mutation Process. 

The core of all mutations is some form of cross-fade 
between the mutable components of the Source and 
Target morphologies. The relative strength of presence 
of Source/Target mutable components in the mutation 
operation is controlled by a parameter labelled Ω, in the 
unit range. The Merger function is normally the inverse 
of the Splitter function. 

Typically, data are cardinally scaled. Standard 
mutation can be either relative (i.e., the data stream is 
viewed as a stream of differences from one time point to 
the next) or absolute (all data are evaluated relative to 
some absolute reference). In either case, the Splitter will 
look at the sign and absolute magnitude of the Source 
and Target data, with three variants:  

• Contour mutations: here the sign of the interval is 
the mutable component; the immutable component 
is the absolute magnitude of the interval 

• Unsigned (or magnitude) mutations: here the 
absolute magnitude of the interval is the mutable 
component; the immutable component is the sign of 
the interval 

• Signed mutations: here, the signed magnitude of the 
interval is the mutable component, leaving a “nil” 
immutable component. 
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The standard mutation functions are classified as either 
uniform or irregular. In uniform mutations, the cross-
fade process involves taking a weighted arithmetic mean 
between the two mutable components. In irregular 
mutations, either the source value or the target value is 
taken unchanged to produce the mutation; one of the 
two values is chosen at random, using a stochastic 
process. The relative probability of choosing the source 
or target is determined by the value of Ω.  

Conventionally, the three different splitter types are 
combined with the uniform/irregular dichotomy to yield 
five different mutation types named as follows: 

• UUIM: Uniform Unsigned Interval Mutation. 
• IUIM: Irregular Unsigned Interval Mutation 
• USIM: Uniform Signed Interval Mutation 
• ISIM: Irregular Signed Interval Mutation 
• LCM: Linear Contour Mutation 

LCM is an irregular mutation using the interval sign as 
the mutable component. The asymmetry in the above 
enumeration is because the sign of an interval does not 
obviously lend itself to a uniform treatment. Neverthe-
less, this asymmetry prompted the author to investigate 
the possibilities of using sign as the uniform mutable 
component. The result is discussed in section 6 below.  

3. DESIGN GOALS 

The initial goal was to implement time-domain and 
spectral mutations in Max/MSP, allowing interactive 
experimentation with the effects of mutation parameters. 
The “define parameters; process; play; try again” cycle 
inherent in processing outside time makes it almost 
impossible to gain a feel for how these parameters effect 
the resulting sound—arguably one of a composer’s 
central concerns. An additional motivation was the 
prospect of being able to use the mutation algorithms as 
a processing technique in interactive performance. This 
would serve to give the composer greater flexibility—in 
previous implementations, many of the mutation 
parameters were static, whereas an interactive 
implementation should allow the user to vary any and 
all of the parameters while processing is taking place.  

A further, long-term goal was to provide a tool that 
would aid investigation into variations of the abstract 
description of mutation algorithms described above.  

4. THE OBJECTS 

Three external objects have been implemented for 
mutation algorithms: 

• lp.tim~ Time Domain Mutation 
• lp.frim~ Spectral/Frequency Domain Mutation 
• lp.vim Event-level Mutation of numeric data 

All objects can be initialized to a given mutation algo-
rithm, mutation index, clumping value (discussed 
below), and a delta emphasis value (used in relative 
intervals). All of these parameters can be modified at 
any time, even while the mutation process is running. 
The user can switch between absolute and relative 
intervals at any time. 

An undocumented detail of SoundHack’s Spectral 
Mutation is that FFT bins are automatically grouped into 
third-octave bands during irregular mutations. In 
lp.frim~ the user can optionally specify an arbitrary 
“banding” interval ranging from whole octaves to 1/15-
octave. This has proven to be a subtle but valuable tool 
in irregular Spectral Mutation. 

5. A NEW METHOD FOR “CLUMPING” 

Irregular mutations have a tendency to generate 
“crunchy” or “scratchy” sounds, particularly in the time 
domain. With some input signals there is also a 
tendency for irregular mutations in the frequency 
domain to introduce fairly static frequency bands that 
can sound like a gentle whistling or have a bell-like 
character of considerable charm. These differences can 
be clearly audible, although they also depend on the 
other mutation parameters as well as the source and 
target signals. To give the composer greater control over 
these artefacts, a “clumping factor” was introduced [7]. 
This can be described as a granularity of the randomness 
in the stochastic process whereby a decision is made 
whether to use the Source or Target values for the 
mutable component.  

The value of the clumping factor, labelled γ, lies in 
the unit range. At zero, the random choice between 
Source and Target mutable values is a simple Bernoulli 
process. As the clumping factor increases, the Bernoulli 
process is modified such that the probability of changing 
state between successive data points decreases, while 
maintaining the original, long-term distribution of 
Source and Target components as specified by Ω.  

Previous implementations of clumping require 
specifying the length of the mutation process and follow 
a notion of “randomness with feedback” propagated by 
Ames [1][2]. This approach was the single greatest 
obstacle to an implementation of irregular mutations 
inside time, since it relied on knowing the size of the 
entire data set. This is an acceptable assumption to make 
when working outside time with fixed-length data. 
However, mutations inside time are necessarily of 
indeterminate length.  

Initial experiments using arbitrary lengths as the basis 
for clumping calculations proved to introduce 
undesirable regularities in the resulting audio signals. 
Also, the goal of allowing the clumping index to be 
changed interactively is effectively impossible with a 
fixed mutation length. At the very least, using Amesian 
feedback would have introduced undesirable latencies 
when changing the value of the clumping parameter.  

An alternative approach adequate for clumping inside 
time was found by applying the theory of Markov 
Chains. Indeed, Markov Chains seem to this author to 
be a more natural basis for clumping than Amesian 
feedback.  

In essence, an irregular mutation can be viewed as 
having two states: “using source interval” and “using 
target interval” (abbreviated as S and T, respectively). 
Polansky’s formula for modifying the mutation index 
based on the clumping index, γ, is  

 ! " = "
1#$  (1) 
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Figure 2 Patch demonstrating a delta-epsilon feedback loop to prevent the audio signal from “exploding.” 

This was taken as a natural starting point for the 
probability of “choose T for the next state when the 
current state is T” (represented as p[Ti, Ti-1]). The 
probability of p[Si, Ti-1] is then necessarily 1 ! " # . The 
question was: what probabilities should be chosen for 
p[Ti, Si-1] and p[Si, Si-1] so that the probabilities of the 
entire Markov process result in the following equality? 

 p[T] = p[Ti, Ti-1] + p[Ti, Si-1] = Ω (2) 

The probabilities for p[Ti, Si-1] and p[Si, Si-1] ought, 
apparently, to be a function of Ω and γ, with  

 p[Ti, Si 1] = f !,"( ) (3) 

 p[Si, Si 1] = 1- f !,"( ) (4) 

Setting up equations for the probabilities p[T] and p[S] 
implicit in this Markov process and solving for f !,"( ) 
results in the identity: 

  f !,"( ) = 1 # $ ! ( )
!

1#!
 (5) 

which has the properties of being efficient to implement 
and applicable to arbitrarily long sequences of events.  

 

6. WEIGHTED CONTOUR MUTATION (WCM) 

Whereas mutations based on signed and unsigned 
intervals both come in “irregular” and “uniform” 
flavours, previous implementations only recognize an 
irregular form of contour mutation, Linear Contour 
Mutation (LCM).  

In contour mutations, the mutable component of the 
source and target data vectors can take on only three 
values at any point: going up, going down, or remaining 
constant (more compactly: 1, -1, or 0). If the mutant is 
only allowed to take on these three values, an irregular 
mutation appears to be the only option. However, 

viewed through the abstract approach described in 
Section 2, there is no intrinsic reason not to implement a 
uniform version of Contour Mutation. If we look on the 
mutant contour as a component that can be weighted, 
controlling what percentage of the source magnitude is 
to be used when calculating the final mutant value, the 
formula for WCM (using notation from [5]) can be 
given as:  

 Mi = Mj + Smag Ssgn + ! Tsgn " Ssgn( )( )  (6) 

Although this variant may not be as immediately 
convincing as LCM, the “Weighted Contour Mutation” 
(WCM) has proved to be an acoustically attractive 
resource. The mutants produced by WCM sound 
vaguely similar those produced by USIM, although 
retaining an individual characteristic. WCM can be best 
described as “gentler, kinder” than the other mutation 
algorithms, which can often produce chaotic and even 
brutal sonic effects. WCM has proved to be a welcome 
addition to the mutation toolkit. 

7. EXPERIENCE AND FUTURE DIRECTIONS 

The mutation objects are available as part of the Litter 
Power Package [3]. The Starter Pack version of Litter 
Power includes the lp.tim~ object; lp.frim~ and lp.vim 
are included in the Professional Bundle.  

The author's compositions “The Door: Six Lines” and 
“The Door: Theme, Lines, Canon” make extensive use 
of the mutation objects, particularly the ability to let all 
mutation parameters vary over time in arbitrarily 
complex ways. The objects have also been used in live 
performance (the author’s Music for 31 January and 
Music for 11 September) and in generative 
compositions, for instance Radioph, jointly composed 
by Zbigniew Karkowski and the author, or the audio-
visual installation realiTV developed with video artist 
John Dekron.  
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Mutation processes can easily become chaotic. 
Although this is a powerful resource in composition 
outside time, means for controlling the chaos may be 
necessary in the context of sound installations or other 
generative situations. A feedback loop controlling the 
delta emphasis parameter is an effective means of con-
trolling chaos. One example of programming this kind 
control is given in Fig. 2. The core processing is per-
formed inside the pfft~ object found in the centre of the 
patch. The contents of this subpatch are shown in Fig. 3.  

Additional applications include:  

• Experiments with event-level mutations to con-
trol mutations of text texts in an interactive 
situation.  

• Deeper exploration of event-level mutation as 
an interactive compositional tool, analogous to 
the approach described by Vaggione [9].  

• Interactive experimentation with mutation 
parameters: this has proved to be a great aid in 
developing a better understanding of how these 
parameters interact. 

• Combinations of mutation processes beyond 
the “canonical” LCM/UUIM and LCM/IUIM. 
These objects combined with the program-
mability of the Max/MSP environment allow 
for arbitrarily complex composites.  

Some composers have found the wealth of parameters 
and options in mutation algorithms overwhelming. 
Recognizing that some will prefer a less complex 
approach, a simple, one-parameter-controls-everything 
object named lp.emeric~ has been developed. A further 
object with the working title lp.minerva~ is under 
development. The goal is to provide a middle ground 
between lp.frim~’s flexibility and complexity, on the 
one hand, and lp.emeric~’s simplicity. 

Recently, Verfaille and Depalle [10] have touched on 
Morphological Mutation, viewing it as a special case of 
their source-filter model for adaptive effects processing. 
The convolution of their approach with the flexibility 
provided by Max/MSP-based tools for mutation 
processing promises to be a fertile ground for new audio 
processing techniques.  

Finally, work is now under way exploring possi-
bilities for applying mutation techniques to video. 
Whereas a simple pixel-by-pixel approach has shown 
itself to be of only limited appeal, work in the spectral 

domain promises to generate a compelling and attractive 
new visual technique. 
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Figure 3: Core of the Spectral Mutation patch in Fig. 2. 
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