

LITTER MUTATORS
MOVING MORPHOLOGICAL MUTATION INSIDE TIME

 Peter Castine
 Compositeur et informaticien indépendant

p@castine.de

ABSTRACT

The notion of Morphological Mutations was introduced
by Larry Polansky, gaining wider popularity with the
implementation of Spectral Mutation in Tom Erbe’s
SoundHack. However, until now all implementations
were outside time.1 Furthermore, the theoretical frame-
work used to date prevented inside time calculation of
certain mutation processes. This is not a matter of CPU
demands but of mathematics. This paper discusses an
implementation of mutation and the modifications to the
theory that were necessary to handle mutation processes
interactively inside time. A raft of further extensions to
existing mutation techniques were developed.
Experiences in the development process are documented
and new applications are investigated.

The implementation presented here runs as a set of
external objects for the Max/MSP platform, now
running under both Mac OS and Windows XP.

1. INTRODUCTION

The notion of morphological mutations was introduced
by Polansky in a series of papers beginning in the late
80's [4][5][7]. In its simplest form, mutation can be
understood as a kind of cross-fade between two musical
structures. More complex mutations extend this notion
dramatically, reaping results ranging from the wonderful
to the bizarre. Originally applied at the level macro-
events (pitches, intervals, harmonies, durations, etc.).
The ideas were soon extended to the micro-events:
direct processing of audio signals at the sample level.

Previous implementations process mutations
exclusively outside time [6][7][8]. This paper describes
a new set of external objects for Max/MSP
implementing mutation inside time. These objects
provide a unified set of tools with greater flexibility than
their forerunners. Additionally, interactive experiments
in novel configurations as well as time-variant handling
of mutation parameters not possible in any other
implementation can now be conveniently built.

To perform mutations inside time it was necessary to
develop a new method for controlling “clumping”, an
important step in certain stochastic mutation algorithms.
This is discussed in section 5. A new member of the
mutation family called “Weighted Contour Mutation”
(WCM) has been developed and will be introduced in

1 The designations inside time and outside time are used throughout
this paper in preference to the more popular but problematic terms
“real-time” and “non-real time”.

below. Finally, several applications of the mutation
objects will be presented.

2. OVERVIEW
(OR: MASTERING MORPHOLOGICAL

MUTATIONS IN UNDER A MINUTE)

Mutation can be viewed as starting from two morpholo-
gies: abstract sequences of events, typically represented
as cardinal values. These morphologies are called
Source and Target. Both are first processed by a Splitter
function, dividing Source and Target into mutable and
immutable components. The archetypal Splitter
functions will classify scalar data into sign and
magnitude. For example, Unsigned (Magnitude)
Mutations can be described as assigning magnitudes to
the mutable component and sign to the immutable
component. (See Fig. 1)

Figure 1 Generic Overview of the Mutation Process.

The core of all mutations is some form of cross-fade
between the mutable components of the Source and
Target morphologies. The relative strength of presence
of Source/Target mutable components in the mutation
operation is controlled by a parameter labelled Ω, in the
unit range. The Merger function is normally the inverse
of the Splitter function.

Typically, data are cardinally scaled. Standard
mutation can be either relative (i.e., the data stream is
viewed as a stream of differences from one time point to
the next) or absolute (all data are evaluated relative to
some absolute reference). In either case, the Splitter will
look at the sign and absolute magnitude of the Source
and Target data, with three variants:

• Contour mutations: here the sign of the interval is
the mutable component; the immutable component
is the absolute magnitude of the interval

• Unsigned (or magnitude) mutations: here the
absolute magnitude of the interval is the mutable
component; the immutable component is the sign of
the interval

• Signed mutations: here, the signed magnitude of the
interval is the mutable component, leaving a “nil”
immutable component.

 95

The standard mutation functions are classified as either
uniform or irregular. In uniform mutations, the cross-
fade process involves taking a weighted arithmetic mean
between the two mutable components. In irregular
mutations, either the source value or the target value is
taken unchanged to produce the mutation; one of the
two values is chosen at random, using a stochastic
process. The relative probability of choosing the source
or target is determined by the value of Ω.

Conventionally, the three different splitter types are
combined with the uniform/irregular dichotomy to yield
five different mutation types named as follows:

• UUIM: Uniform Unsigned Interval Mutation.
• IUIM: Irregular Unsigned Interval Mutation
• USIM: Uniform Signed Interval Mutation
• ISIM: Irregular Signed Interval Mutation
• LCM: Linear Contour Mutation

LCM is an irregular mutation using the interval sign as
the mutable component. The asymmetry in the above
enumeration is because the sign of an interval does not
obviously lend itself to a uniform treatment. Neverthe-
less, this asymmetry prompted the author to investigate
the possibilities of using sign as the uniform mutable
component. The result is discussed in section 6 below.

3. DESIGN GOALS

The initial goal was to implement time-domain and
spectral mutations in Max/MSP, allowing interactive
experimentation with the effects of mutation parameters.
The “define parameters; process; play; try again” cycle
inherent in processing outside time makes it almost
impossible to gain a feel for how these parameters effect
the resulting sound—arguably one of a composer’s
central concerns. An additional motivation was the
prospect of being able to use the mutation algorithms as
a processing technique in interactive performance. This
would serve to give the composer greater flexibility—in
previous implementations, many of the mutation
parameters were static, whereas an interactive
implementation should allow the user to vary any and
all of the parameters while processing is taking place.

A further, long-term goal was to provide a tool that
would aid investigation into variations of the abstract
description of mutation algorithms described above.

4. THE OBJECTS

Three external objects have been implemented for
mutation algorithms:

• lp.tim~ Time Domain Mutation
• lp.frim~ Spectral/Frequency Domain Mutation
• lp.vim Event-level Mutation of numeric data

All objects can be initialized to a given mutation algo-
rithm, mutation index, clumping value (discussed
below), and a delta emphasis value (used in relative
intervals). All of these parameters can be modified at
any time, even while the mutation process is running.
The user can switch between absolute and relative
intervals at any time.

An undocumented detail of SoundHack’s Spectral
Mutation is that FFT bins are automatically grouped into
third-octave bands during irregular mutations. In
lp.frim~ the user can optionally specify an arbitrary
“banding” interval ranging from whole octaves to 1/15-
octave. This has proven to be a subtle but valuable tool
in irregular Spectral Mutation.

5. A NEW METHOD FOR “CLUMPING”

Irregular mutations have a tendency to generate
“crunchy” or “scratchy” sounds, particularly in the time
domain. With some input signals there is also a
tendency for irregular mutations in the frequency
domain to introduce fairly static frequency bands that
can sound like a gentle whistling or have a bell-like
character of considerable charm. These differences can
be clearly audible, although they also depend on the
other mutation parameters as well as the source and
target signals. To give the composer greater control over
these artefacts, a “clumping factor” was introduced [7].
This can be described as a granularity of the randomness
in the stochastic process whereby a decision is made
whether to use the Source or Target values for the
mutable component.

The value of the clumping factor, labelled γ, lies in
the unit range. At zero, the random choice between
Source and Target mutable values is a simple Bernoulli
process. As the clumping factor increases, the Bernoulli
process is modified such that the probability of changing
state between successive data points decreases, while
maintaining the original, long-term distribution of
Source and Target components as specified by Ω.

Previous implementations of clumping require
specifying the length of the mutation process and follow
a notion of “randomness with feedback” propagated by
Ames [1][2]. This approach was the single greatest
obstacle to an implementation of irregular mutations
inside time, since it relied on knowing the size of the
entire data set. This is an acceptable assumption to make
when working outside time with fixed-length data.
However, mutations inside time are necessarily of
indeterminate length.

Initial experiments using arbitrary lengths as the basis
for clumping calculations proved to introduce
undesirable regularities in the resulting audio signals.
Also, the goal of allowing the clumping index to be
changed interactively is effectively impossible with a
fixed mutation length. At the very least, using Amesian
feedback would have introduced undesirable latencies
when changing the value of the clumping parameter.

An alternative approach adequate for clumping inside
time was found by applying the theory of Markov
Chains. Indeed, Markov Chains seem to this author to
be a more natural basis for clumping than Amesian
feedback.

In essence, an irregular mutation can be viewed as
having two states: “using source interval” and “using
target interval” (abbreviated as S and T, respectively).
Polansky’s formula for modifying the mutation index
based on the clumping index, γ, is

 ! " = "
1#$ (1)

 96

Figure 2 Patch demonstrating a delta-epsilon feedback loop to prevent the audio signal from “exploding.”

This was taken as a natural starting point for the
probability of “choose T for the next state when the
current state is T” (represented as p[Ti, Ti-1]). The
probability of p[Si, Ti-1] is then necessarily 1 ! " # . The
question was: what probabilities should be chosen for
p[Ti, Si-1] and p[Si, Si-1] so that the probabilities of the
entire Markov process result in the following equality?

 p[T] = p[Ti, Ti-1] + p[Ti, Si-1] = Ω (2)

The probabilities for p[Ti, Si-1] and p[Si, Si-1] ought,
apparently, to be a function of Ω and γ, with

 p[Ti, Si 1] = f !,"() (3)

 p[Si, Si 1] = 1- f !,"() (4)

Setting up equations for the probabilities p[T] and p[S]
implicit in this Markov process and solving for f !,"()
results in the identity:

 f !,"() = 1 # $! ()
!

1#!
 (5)

which has the properties of being efficient to implement
and applicable to arbitrarily long sequences of events.

6. WEIGHTED CONTOUR MUTATION (WCM)

Whereas mutations based on signed and unsigned
intervals both come in “irregular” and “uniform”
flavours, previous implementations only recognize an
irregular form of contour mutation, Linear Contour
Mutation (LCM).

In contour mutations, the mutable component of the
source and target data vectors can take on only three
values at any point: going up, going down, or remaining
constant (more compactly: 1, -1, or 0). If the mutant is
only allowed to take on these three values, an irregular
mutation appears to be the only option. However,

viewed through the abstract approach described in
Section 2, there is no intrinsic reason not to implement a
uniform version of Contour Mutation. If we look on the
mutant contour as a component that can be weighted,
controlling what percentage of the source magnitude is
to be used when calculating the final mutant value, the
formula for WCM (using notation from [5]) can be
given as:

 Mi = Mj + Smag Ssgn + ! Tsgn " Ssgn()() (6)

Although this variant may not be as immediately
convincing as LCM, the “Weighted Contour Mutation”
(WCM) has proved to be an acoustically attractive
resource. The mutants produced by WCM sound
vaguely similar those produced by USIM, although
retaining an individual characteristic. WCM can be best
described as “gentler, kinder” than the other mutation
algorithms, which can often produce chaotic and even
brutal sonic effects. WCM has proved to be a welcome
addition to the mutation toolkit.

7. EXPERIENCE AND FUTURE DIRECTIONS

The mutation objects are available as part of the Litter
Power Package [3]. The Starter Pack version of Litter
Power includes the lp.tim~ object; lp.frim~ and lp.vim
are included in the Professional Bundle.

The author's compositions “The Door: Six Lines” and
“The Door: Theme, Lines, Canon” make extensive use
of the mutation objects, particularly the ability to let all
mutation parameters vary over time in arbitrarily
complex ways. The objects have also been used in live
performance (the author’s Music for 31 January and
Music for 11 September) and in generative
compositions, for instance Radioph, jointly composed
by Zbigniew Karkowski and the author, or the audio-
visual installation realiTV developed with video artist
John Dekron.

 97

Mutation processes can easily become chaotic.
Although this is a powerful resource in composition
outside time, means for controlling the chaos may be
necessary in the context of sound installations or other
generative situations. A feedback loop controlling the
delta emphasis parameter is an effective means of con-
trolling chaos. One example of programming this kind
control is given in Fig. 2. The core processing is per-
formed inside the pfft~ object found in the centre of the
patch. The contents of this subpatch are shown in Fig. 3.

Additional applications include:

• Experiments with event-level mutations to con-
trol mutations of text texts in an interactive
situation.

• Deeper exploration of event-level mutation as
an interactive compositional tool, analogous to
the approach described by Vaggione [9].

• Interactive experimentation with mutation
parameters: this has proved to be a great aid in
developing a better understanding of how these
parameters interact.

• Combinations of mutation processes beyond
the “canonical” LCM/UUIM and LCM/IUIM.
These objects combined with the program-
mability of the Max/MSP environment allow
for arbitrarily complex composites.

Some composers have found the wealth of parameters
and options in mutation algorithms overwhelming.
Recognizing that some will prefer a less complex
approach, a simple, one-parameter-controls-everything
object named lp.emeric~ has been developed. A further
object with the working title lp.minerva~ is under
development. The goal is to provide a middle ground
between lp.frim~’s flexibility and complexity, on the
one hand, and lp.emeric~’s simplicity.

Recently, Verfaille and Depalle [10] have touched on
Morphological Mutation, viewing it as a special case of
their source-filter model for adaptive effects processing.
The convolution of their approach with the flexibility
provided by Max/MSP-based tools for mutation
processing promises to be a fertile ground for new audio
processing techniques.

Finally, work is now under way exploring possi-
bilities for applying mutation techniques to video.
Whereas a simple pixel-by-pixel approach has shown
itself to be of only limited appeal, work in the spectral

domain promises to generate a compelling and attractive
new visual technique.

8. ACKNOWLEDGEMENTS

Thanks to Larry Polansky and Tom Erbe for insights
into the implementation details of Morphological
Mutations in HMLS and SoundHack. Max Neuhaus was
a dedicated beta tester and contributed useful wrapper
abstractions. Akira Rabelais’ software was an unending
source of entertainment. Thanks also to the Bergen
senter for elektronisk kunst, where I was able to turn a
raw hack into reliable software during a guest residency.
Readers’ comments and suggestions are gratefully
acknowledged. Additional support and ideas came from
Kasper T. Toeplitz and Zbigniew Karkowski. Particular
thanks to Wendy and Danny, who thought it all sounded
pretty weird.

9. REFERENCES

[1] Ames. Ch. “A Catalog of statistical
distributions: Techniques for transforming
determinate, random, and chaotic populations”,
Leonardo Music Journal, 1991.

[2] Ames. Ch. “A Catalog of sequence generators:
Accounting for proximity, pattern, exclusion,
balance and/or randomness.” Leonardo Music
Journal, 1992.

[3] Castine, P. Litter Power. 4-15 Music &
Technology, Berlin, 2002-07.

[4] Polansky, L. “Morphological metrics: An
introduction to a theory of formal distances”,
Proceedings of the International Computer
Music Conference, Champaign-Urbana, 1987.

[5] — “More on Morphological Mutations: Recent
Techniques and Developments Proceedings of
the International Computer Music Conference,
San Jose, 1992

[6] Polansky, L. and Erbe, T. “Spectral Mutation
in SoundHack: A brief description.”
Proceedings of the International Computer
Music Conference, Banff, 1995.

[7] Polansky, L. and McKinney, M.
“Morphological Mutation functions:
Applications to motivic transformation and a
new class of cross-synthesis techniques.”
Proceedings of the International Computer
Music Conference, Montréal, 1991.

[8] Rabelais, A. Agreïphontes Lyre. <http://
akirarabelais.com/software/software.html>.

[9] Vaggione, H. “Vers une approche
transformationnelle en CAO”, Les Actes de
“Journées d’Informatique Musicales”, Caen,
1996

[10] Verfaille, V. and Depalle, Ph. A. “Adaptive
effects based on STFT, using a source-filter
model”. 7th International Conference on Digital
Audio Effects (DaFX). Naples, 2004.

Figure 3: Core of the Spectral Mutation patch in Fig. 2.

 98

