Litter
Power
Package
Documentation

ALitter

Litter Power Package

Design

Development

Documentation

Quality Assurance

Graphics

Marketing

Sales

Chief cook

Bottle-washing:
Peter Castine

Copyright © 1992-2002 Peter Castine

Contact:
e-mail: 4-15@kagi.com
Fax: +49 (30) 4367 1058

WWW: http:/ /www.bek.no/~pcastine/

What is Litter Power?

Litter Power

What is the Litter Power Package?

The short answer: Random number generators, noise generators, interval mutation, and
much, much more.

Litter began life as a set of objects implementing a large collection of random number
distributions, including but not limited to all the generators documented in Denis
Lorrain’s seminal article “A Panoply of Stochastic ‘Cannons’.” In the original Litter
Package these were implemented as patchers (“abstractions”). In the new Litter Power
Package all of these generators have been implemented as external objects, resulting in
execution speeds in the area of ten to twenty times faster than in previous incarnations.
The generators include basic random distributions for the MIDI/control domain (“white”
noise, Brownian motion, and 1/f noise) as well as “cannons” for generating continuous
and discrete values according to many well-known distributions (binomial, linear,
exponential, Poisson, and Gauss, to name a few).

Recognizing the limitations of the core random number generator provided by the Mac
OS and C standard libraries, Litter Power uses more modern methods of generating
random numbers that are both faster and more robust than the old linear congruence
method used in Max. The random number generators in Litter Power produce 32-bit
numbers with all bits random and cycles of 2% and higher. With Litter Power you can
use the least significant bit as a random coin toss, something that does not work well
with the standard random object. Random distributions new to the Litter Power package
include log-normal; a very flexible general-purpose implementation of the finite urn
model; support for non-integral parameters to the Gamma distribution; plus an | Ching
implementation supporting both coin and yarrow stick methods of appealing to the
oracle.

Reflecting the significance of MSP in many current Max applications, “tilde” variants of
the noise generators have been added, providing efficient generators for white, pink,
brown, and gray noise, as well as sources for “popcorn” noise and more. Speaking of
linear congruence, there is a parametric linear congruence module, with which you can
generate a variety of sounds ranging from noise to pitched sounds. Find the shortest
linear congruence cycle!

Also included with Litter Power are implementations of Interval Mutation algorithms,
providing features analogous to the mutation functions in SoundHack and Argeiphontes
Lyre, as well as supporting mutation of MIDI and other control data.

Finally, a number of utilities have been included in the package. Skew and kurtosis
have been added to the statistical data calculated in previous versions of Litter (count,
minimum, maximum, mean, and standard deviation). A novel group of objects for
mapping and limiting values and signals have been added to your arsenal of Max tools.
Phase unwrapping needs have been provided for. And more...

Enjoy.

22 January, 2002 -3-

Litter POWQI’ Litter Power Bund|es

Which Version of Litter Power?

Litter Power is distributed in the following forms: a Litter Power Starter Pack and a
Litter Power Professional Bundle. The Professional Bundle is available in two alternate
license forms, “Artistic” and “Institutional”

In brief:

1) The Litter Power Starter Pack is distributed free of charge, but is limited to a subset
of the entire package and is for personal use only. You may not resell any of the
components.

1) The Litter Power Professional Bundle is the full set of Litter Power objects, and may
be used for research, artistic work, development, etc. The artistic license also allows
you to resell Litter components in the context of original work (music projects and
other artwork, or as part of Collectives). The institutional license is a multi-user
license.

Please refer to your license for further specifics about usage. The overview above is a
summary, the license text is definitive.

Site licenses are also available, please contact 4-15 Music & Technology for further
details <mailto: 4-15@kagi.com>.

The Litter Power object overview below indicates which objects are included in the
Starter Pack and which objects are only available in the Professional Bundle.

In terms of version numbering, all Litter Power objects include standard Mac OS version
(‘vers’) resources, so that version information is displayed in The Finder as well as when
using the Max Get Info... command. This should make it easier for you to compare
versions of individual objects when package updates become available.

-4 - 22 January, 2002

Litter Power Contents

Litter Power

What's in Litter Power?

Discrete Distributions

Ip.bernie Bernoulli distribution, binary choice All Bundles

Ip.dicey Dice (variable number of faces) Pro Bundles only

Ip.ernie Arbitrary distributions (“finite urn” model) Pro Bundles only

Ip.ginger I Ching (yarrow stick and coin oracles, calculate | All Bundles
changes)

Ip.lili Parametric linear congruence pseudo-random Pro Bundles only
number generator

Ip.pfishie Poisson distribution Pro Bundles only

Ip.tata Tausworthe 88 pseudo-random number All Bundles
generator. Cycle approximately 2%.

Ip.titi Matsumoto’s TT800 pseudo-random number Pro Bundles only
generator. Cycle approximately 25%.

Continuous Distributions

McCartney algorithm.

Ip.abbie Arc sine and beta distributions Pro Bundles only
Ip.chichi Chi square distribution Pro Bundles only
Ip.coshy Cauchy distribution (the symmetrical or Pro Bundles only
“bilateral” Cauchy distribution as well as
positive and negative variants)
Ip.expo Exponential and Laplace (bilateral exponential) | Pro Bundles only
distributions
Ip.fishie Fisher distribution Pro Bundles only
Ip.gammer | Gamma and Erlang distributions Pro Bundles only
Ip.grrr “Gray” noise Pro Bundles only
Ip.hyppie Hyperbolic cosine distribution Pro Bundles only
Ip.linnie Linear and triangular distributions All Bundles
Ip.loggie Logistic distribution Pro Bundles only
Ip.lonnie Log-normal distribution Pro Bundles only
Ip.norm Normal (Gaussian) distribution All Bundles
Ip.pfff 1/f* distribution (“Brownian” noise) All Bundles
Ip.shhh Uniform distribution (“white” noise) All Bundles
Ip.sss 1/f distribution (“pink” noise) using the All Bundles
Voss/Gardner algorithm
Ip.stu Student’s t distribution. Pro Bundles only
Ip.y Weibull/Rayleigh distribution Pro Bundles only
Ip.zzz 1/f distribution (“pink” noise) using the Pro Bundles only

22 January, 2002

Litter Power

Litter Power Contents

Signal Generators

Ip.frrr~ Low frequency noise Pro Bundles only
Ip.grrr~ Gray noise Pro Bundles only
Ip.llI~ (Parametric) linear congruence noise Pro Bundles only
Ip.pfff~ Brown noise All Bundles
Ip.phhh~ Black noise Pro Bundles only
Ip.ppp~ Popcorn noise (“dust”) Pro Bundles only
Ip.shhh~ White noise All Bundles
Ip.sss~ Pink (1/f) noise, using the Voss/Gardner All Bundles
algorithm
Ip.zzz~ Pink (1/f) noise, using the McCartney Pro Bundles only

algorithm.

Mutation Processors

util

Ip.frim~ Frequency-domain (spectral) interval mutation | Pro Bundles only

Ip.tim~ Time-domain interval mutation All Bundles

Ip.vim Interval mutation of numeric values Pro Bundles only

ities

Ip.c2p~ Convert pairs of signals from Cartesian All Bundles
representation (e.g., fft~ output) to polar form
(e.g., for processing by Ip.frim~)

Ip.kg Map I Ching output (in the range 1 to 64) to Pro Bundles only
other ranges.

Ip.p2c~ Convert pairs of signals from polar All Bundles
representation (e.g., Ip.frim~ output) to
Cartesian form (e.g. for processing by ifft~).

Ip.i Read texts of I Ching oracles Pro Bundles only

Ip.scampf Scale, offset, and limit numbers; output floating- | Pro Bundles only
point values.

Ip.scampi Scale, offset, and limit numbers; output integers. | All Bundles

Ip.scamp~ | Scale/map/limit signals to a user-specified Pro Bundles only
output range.

Ip.stacey Statistics: count, minimum, maximum, mean, All Bundles
standard deviation, skew, and kurtosis

Ip.grl~ Phase unwrapping Pro Bundles only

22 January, 2002

Installing Litter Power Litter Power

Installing (and Removing) Litter Power

Copy the Litter Power Package to a hard disk attached to your computer. The Litter
externals can be located on anywhere you want; just make sure the Max File Preferences
include a path that will lead to them. If you prefer, you can copy the content of the Litter
Objects folder to your the main Max externals folder (this is normally a folder called
externals inside the Max folder) or the Max Startup Items folder (normally max-startup,
also in the Max folder). The contents of the Litter Help folder must be copied into the
Help folder specified in Max” File Preferences. This is normally the folder max-help in
the Max folder.

All Litter Power objects begin with the sequence of characters Ip.. If you, for some
reason, should need to remove them, use Sherlock (the Find... command in The
Finder’s File menu) to search for all items beginning with these three characters and
remove them.

Using Litter Power

All Litter Power external objects respond (in an unlocked Patcher window) to the Get
Info... command by displaying a small Alert Box with version and copyright
information. The Get Info... command will also print information about current object
settings in the Max window. This state information can also be generated by double-
clicking on a Litter Power external object in a locked Patcher window. This has proven
to be a useful debugging device while developing patches using Litter Power external
objects. A few of the Litter Power external objects have no state information, with these
objects a double-click will generate no information in the Max window (at least, nothing
useful).

All Litter Power external objects generate a brief message in the Max window when
they are loaded. This is to help remind you, should you forget, where they came from.

The random number distributors are based on the Tausworthe 88 random number
generator. This algorithm is not only faster than the standard Linear Congruence
algorithm used otherwise in Max, it is also much more robust. Tausworthe 88 generates
32-bit random numbers, with all bits exhibiting random properties (i.e., the bits show
no correlations or “patterns’), and has a cycle of approximately 2* deviates before
repeating (this is about 75,000,000,000,000,000 times longer than the longest possible 32-
bit linear congruence cycle).

All random number generators auto-seed themselves, based on the current date and
time of day, time since starting up your Mac, and other values garnered from the
operating system. This guarantees that you will get a different set of random values
every time you run any patch using Litter Power externals. This also guarantees that all
Litter Power externals in your patch will be mutually independent and that no
undesired correlations occur. However, if you wish a “random” pattern to be replicable,
you can specify a non-zero seed as the final initialization argument to any of the
random-value generating objects when you create it. You can “re-seed” objects that were
created with a seed at any time. This may be useful for testing a patch, some people
may also find this helpful for a kind of “controlled (pseudo-) randomness.”

All random number generators respond to a bang by sending a random number from
the given distribution out their leftmost outlet. Several of these objects can also be used
as mapping objects, generating an output value that depends, in some way, on the input.
Presuming that the input values follow a uniform distribution in the range from zero to

22 January, 2002 -7-

Litter POWGI’ Using Litter Power

one, the output values will follow the given random distribution. For instance, Ip.expo
will map uniformly distributed input values to an exponential distribution. Of course, if
the input values are not uniformly distributed, the distribution of the output values will
be something weirdly different from the named distribution. Still, this may be fun. You
may find the Ip.scampi object useful for mapping MIDI input to values to the unit range
in this context. See the documentation of the individual objects for further details.

Several of the noise and random number generators have a parameter called an NN
factor. This parameter controls the number of bits of noise generated. The parameter is
always set to zero by default, but positive integral values will cause low-order bits to be
cleared, generating “low quality” noise. Very small values of the NN factor do not
perceptibly change the sound of noise generated, but values close to the maximum of 31
can effect the audio signal quite significantly. The name of this factor bears no
resemblance to any fictional character invented by Dostoyevsky.

Talking about names...
Why “Litter”?

The use of the term ‘cannon’ to describe an algorithm for generating random numbers
was introduced by lannis Xenakis. The motivation for this term comes from the French
idiom tirer au hasard (choose at random). Obvious, isn’t it?

In the same vein, when the original Litter Package was developed, I could not resist the
temptation to name it after a relatively obscure pun on the German word for dice.
(Wirfeln = throw dice, but conceivably a diminutive of Wurf = litter of puppies.)

Despite obscure etymology, the name has gained acceptance. Long live Litter! Over
time, a number of objects have been developed that go beyond the generation of
random distributions, but seem in some way or another related to using random
processes in music (as well as some deterministic processes). These now take their place
in the Litter canon.

With only a few exceptions, Litter follows the longstanding Max tradition of, shall we
say, whimsical object names. The logic behind the more obscure derivations is
explained in the documentation of the individual objects (see the “What’s in a name?”
sections). However, all object names are prefixed Ip. (for Litter Power) in an effort to
maintain an independent name space. The Litter Power Thesaurus should be an aid in
finding your way to the object you need, no matter how surprising the name may
appear.

Acknowledgements

Much of the development work for the Litter Power package was done during a
residency in Bergen, Norway, as a guest of the Bergen senter for elektronisk kunst
(BEK) and Kulturhuset USF. Thanks particularly to Jergen, Trond, and Christian of BEK
for their encouragement and enthusiasm.

Several of the ideas for different kinds of noise generators were inspired by James
McCartney’s SuperCollider application. James took the time to discuss details of different
algorithms for generating random numbers despite my working on a “competing”
project; I am indebted to him both as a scholar and a gentleman.

Thanks also to Larry Polansky and Tom Erbe for their support while developing the
Interval Mutation objects.

-8- 22 January, 2002

Litter Acknowledgements Litter Power

Without the work of Miller Puckette, David Zicarelli, and all the folks at Cycling 74
there would be no Max, no MSP, and no Litter. Thanks.

Finally, thanks are due to the Litter Pro Beta Testers as well as the numerous people
who provided feedback on the original Litter package.

Bibliography

| Ging, trans. Richard Wilhelm (Munich: Eugen Diederichs, 1973).

I Ching or Book of Changes, trans. by Cary F. Baynes (from the German translation with
commentaries by Richard Wilhelm). (Princeton, New Jersey: Princeton University Press,

1967).

Ahrens, Joachim. H. and Ulrich Dieter, “Computer Methods for Sampling from Gamma,
Beta, Poisson, and Binomial Distributions,” Computing 12 (1974): 223-246.

Ahrens, Joachim H. and Ulrich Dieter, “Generating Gamma Variates by a Modified
Rejection Technique,” Communications of the ACM 25, no. 1 (1982): 47-54.

Ames, Charles, “A Catalog of Statistical Distributions: Techniques for Transforming
Determinate, Random, and Chaotic Populations,” Leonardo Music Journal 1, no. 1 (1991):
55-70.

Ames, Charles, “A Catalog of Sequence Generators: Accounting for Proximity, Pattern,
Exclusion, Balance and/or Randomness,” Leonardo Music Journal 2, no. 1 (1992): 55-72.

Austin, Larry. “An interview with John Cage and Lejaren Hiller.” Source 4, no. 2 (1968):
11-19. Reprinted in Computer Music Journal 16(4), pp. 15-29, 1993.

Behnen, Konrad and Georg Neuhaus, Grundkurs Stochastik, Teubner Studienbticher
Mathematik (Stuttgart: Teubner, 1984).

Cage, John. Silence. (London: Marion Boyars, 1987).

Cheng, Russel C. H., “Generating Beta Variates with Non-Integral Shape Parameters,”
Communications of the ACM 21 (1978): 317-322.

Dodge, Charles and Thomas A. Jerse, Computer Music, Synthesis, Composition, and
Performance (New York: Schirmer, 1985).

L’Ecuyer, Pierre, “Maximally Equidistributed Combined Tausworthe Generators,”
Mathematics of Computation 65 (1996): 203-213.

Gardner, Martin, “Mathematical Games: White and Brown Music, Fractal Curves, and
One-over-f Fluctuations,” Scientific American 1978, 16-31.

Hawking, Stephen W., A Brief History of Time. (London/New York: Bantam 1988)

Hiller, Lejaren A. and Leonard Isaacson, Experimental Music (New York: McGraw-Hill,
1959).

Huang, Kerson and Rosemary Huang, | Ching (New York: Workman, 1987).

Jou, Tsung Hwa, Tao of I Ching: Way to Divination (Boston: Tuttle, 1985)

22 January, 2002 -9-

Litter Power Bibliography

Knuth, Donald E., The Art of Computer Programming, Vol. 2 Semi-Numerical Algorithms.
(Reading, Mass.: Addison-Wesley, 1972).

Lorrain, Denis, “A Panoply of Stochastic ‘Cannons’,” in The Music Machine, ed. Curtis
Roads (Cambridge, Massachusetts: MIT, 1989), 351-379.

Matsumoto, Makoto and Yoshiharu Kurita, “Twisted GFSR Generators II,” ACM
Transactions on Modelling and Computer Simulation 4, no. 3 (1994): 254-266.

Polansky, Larry, “Morphological Metrics: An Introduction to a Theory of Formal
Distances” (paper presented at the International Computer Music Conference,
Champaign-Urbana, 1987), 197-204.

Polansky, Larry and Tom Erbe, “Spectral Mutation in SoundHack: A Brief Description”
(paper presented at the International Computer Music Conference, Banff, Canada, 1995),

307-314.

Polansky, Larry, “Morphological metrics,” Journal of New Music Research (formally
Interface) 25 (1996): 289-368.

Salkind, Neil J., Statistics for People Who (Think They) Hate Statistics. (Thousand Oaks,
California: Sage, 2000)

Voss, Richard F. and John Clarke, “1/f Noise in Music: Music from 1/f Noise,” Journal of
the Acoustic Society of America 63, no. 1 (1978): 258-263.

Xenakis, lannis, Formalized Music (Bloomington, Indiana: Indiana University Press,
1971).

-10 - 22 January, 2002

Litter Power Thesaurus

Litter Power

Thesaurus

1/f distribution

Amesian feedback

Arc sine distribution
Bernoulli Trials

Beta distribution

Bilateral exponential distribution
Binary Choice

Black noise

Brown noise

Brownian motion

Cartesion to Polar coordinates
Cauchy distribution
Chi-Square distribution
Clipping values to range
Coin tosses

Conversion

Count of events

Dice

Dust noise

Erlang distribution
Exponential distribution

First Law of Laplace

Fisher distribution
Floating-point interval mutation
Fractal noise
Frequency-domain interval mutation
Gamma distribution

Gauss distribution

Gray noise

Hyperbolic cosine distribution
I Ching

Interval mutation

Kurtosis

Laplace distribution

Limiting to range

Linear congruence

Linear distribution

Logistic distribution
Log-normal distribution

Low frequency noise

Map values

Maximum

McCartney Pink noise

Mean

Minimum

Morphological mutation

Negative Cauchy distribution
Negative exponential distribution

22 January, 2002

Ip.sss, Ip.zzz, Ip.sss~, |p.zzz~
Ip.ernie

Ip.abbie

Ip.bernie

Ip.abbie

Ip.expo

Ip.bernie

Ip.phhh~

Ip.pfff, Ip.pfff~

Ip.pfff, Ip.pfff~

Ip.c2p~

Ip.coshy

Ip.chichi

Ip.scampf, Ip.scampi, Ip.scamp~
Ip.bernie, Ip.ginger
Ip.c2p~, Ip.p2c~
Ip.stacey

Ip.dicey

Ip.ppp~

Ip.gammer

Ip.expo, Ip.y, Ip.gammer
Ip.expo

Ip.fishie

Ip.vim

Ip.pfff, Ip.pfff~

Ip.frim~

Ip.gammer

Ip.norm

Ip.grrr, Ip.grrr~
Ip.hyppie

Ip.ginger, Ip.kg, Ip.cass
Ip.frim~, Ip.tim~, Ip.vim
Ip.stacey

Ip.expo

Ip.scampf, Ip.scampi, Ip.scamp~
Ip.lili, Ip.11~

Ip.linnie

Ip.loggie

Ip.lonnie

Ip.frrr~

Ip.expo, Ip.hyppie, Ip.linnie, Ip.loggie, Ip.

scampf, Ip.scampi, Ip.scamp~, Ip.kg
Ip.stacey

Ip.zzz, lp.zzz~

Ip.stacey

Ip.stacey

Ip.frim~, Ip.tim~, Ip.vim

Ip.coshy

Ip.expo

Litter Power

Litter Power Thesaurus

Noise

Normal distribution
Parametric linear congruence
Phase unwrapping

Pink Noise

Poisson distribution

Polar to Cartesian coordinates
Popcorn noise

Positive Cauchy distribution
Random walk

Range limiting

Rayleigh distribution
Reflecting values into range
Sample-and-hold noise

Scale values

Skew (statistical)

Spectral mutation

Standard deviation

Statistics

Student’s “T” distribution
“T” distribution

Tausworthe 88 random number algorithm
Time domain mutation
Triangular distribution
TT800 random number algorithm
Uniform distribution

Urn model

Voss/Gardner algorithm
Voss/McCartney algorithm
Weibull distribution

White noise

Wrapping values into range

-12 -

Ip.frrr~, Ip.grrr~, Ip.pfff~, Ip.phhh~,
Ip.ppp~, Ip.shhh, Ip.shhh~, Ip.sss~, Ip.tata,
Ip.titi, Ip.zzz~

Ip.norm

Ip.lili, 1p.11~

Ip.grl~

Ip.sss, Ip.zzz, Ip.sss~, |p.zzz~
Ip.pfishie

Ip.p2c~

Ip.ppp~

Ip.coshy

Ip.pfff, Ip.pfff~

Ip. scampf, Ip.scampi, Ip.scamp~
Ip.y

Ip.scampf, Ip.scampi, Ip.scamp~
Ip.frrr~

Ip. scampf, Ip.scampi

Ip.stacey

Ip.frim~

Ip.stacey

Ip.stacey

Ip.stu

Ip.stu

Ip.tata

Ip.tim~

Ip.linnie

Ip.titi

Ip.shhh, Ip.shhh~, Ip.tata, Ip.titi
Ip.ernie

Ip.sss, Ip.sss~

Ip.zzz, lp.zzz~

Ip.y

Ip.titi, Ip.shhh, Ip.shhh~

Ip. scampf, Ip.scampi, Ip.scampi~

22 January, 2002

Generate random numbers from
beta and arc sine distributions

Ip.abbie

Pro Bundle

The beta distribution generates random numbers in the range 0 < x < 1. It has two
parameters, a and b. These parameters are sometimes referred to in the literature as o
and B or v and 7. The parameters control the shape of the distribution. Loosely
speaking, values of a closer to zero increase the probability of small deviates (i.e.,
random values less than 0.5) being generated; values of b closer to zero increase the
probability of large deviates (i.e., random values larger than 0.5).

The arc sine distribution is a special case of the beta distribution, with a=b =0.5.

Note that if both parameters are set to one, the beta distribution degenerates to a
uniform distribution. Both parameters, by definition, must be greater than zero. The
values zero and one will be generated by Ip.abbie when invalid parameter values are
set.

Input
bang Generate a random number from a beta distribution and send it out the
outlet.
float In the middle inlet: set the a parameter
In the right inlet: set the b parameter
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments

You can initialize an Ip.abbie object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:
float Two floating-point arguments specify initial values for the parameters a
and b. Both parameters default to 0.5 (i.e., Ip.abbie defaults to the arc-sine
distribution).

int Specify a seed for the core random number generator. The generator is
auto-seeded if this value is 0 (the default).

Output

float A random value from a beta distribution.

22 January, 2002 -13 -

. Generate random numbers from
I 'abble beta and arc sine distributions

Pro Bundles
Examples
[0 =—= untitled =—=FHH
|
.
1:1 -
+ ” e
1:1
o
til g 127 ||
1] D7

Generate random values from an arc sine distribution

What's in a name?

“Ah” is for arc sine; “bee” is for beta. Put them together and what do you get?

See Also
Ip.tata Generate random numbers using the Tausworthe 88 algorithm
Ip.scampi Scale, offset, and limit numbers; output integers

Cheng, Russel C. H., “Generating Beta Variates with Non-Integral Shape Parameters,”
Communications of the ACM 21 (1978): 317-322.

-14 - 22 January, 2002

Generate random numbers from
a Bernoulli distribution

Ip.bernie

All Bundles

The Bernoulli distribution is based on a model of n independent trials, each of which
has a probability p of succeeding. The result of a Bernoulli test is the number of
successful trials, which must lie in the range 0 < x < n.

Input
bang Generate a random number from a Bernoulli distribution and send it out
the outlet.
int In the middle inlet: set n, the number of trials in a Bernoulli test. Negative
values are invalid and treated as zero.
float In the right inlet: set p, the probability of any single trial “succeeding.”
This should be a number in the range 0 < p < 1. Negative values are
treated as zero; positive values outside the valid range are treated as one.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments

You can initialize an Ip.bernie object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:

int Specify an initial value for n. Negative values are ignored. The default
value is one.

float ~ Optional value in the range 0 < x < 1. Set the initial value for the
parameter p. Invalid values are ignored. The default value is 0.5

int Optional. Specify a seed for the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

int A random value from a Bernoulli distribution.

22 January, 2002 -15 -

Ip.bernie Generate random numbers from

All Bundles

a Bernoulli distribution

Examples

=——— Untitled

=)=

(=]
4

™
3
|

lp.bernie 127 0.5

g - =
4] [»

Generate random MIDI values from Bernoulli distribution

S

What's in a name?

This is one of the (relatively few) names retained from the original Litter package.

See Also

Ip.pfishie Generate random numbers from a Poisson distribution
Ip.dicey Throw dice

Ip.tata Generate random numbers using the Tausworthe 88 algorithm
-16 -

22 January, 2002

Convert Cartesian to Polar | C2 ~

coordinates All Bundles

This object was developed prior to the availability of the cartopol~ object in MSP
version 2. It is retained in the Litter Power package to allow older Patchers that required
this object to run unaltered and for users of older MSP versions. Conveniently, the
interfaces of Ip.c2p~ and cartopol~ are identical.

Input
signal Inleft inlet: The real component of a frequency domain signal.

In right inlet: The imaginary component of a frequency domain signal.

Arguments

None.

Output

signal Left outlet: The magnitude (i.e., amplitude) component of the polar
representation equivalent to the incoming signal pair.

Right outlet: The phase (in radians) of the polar representation equivalent
to the incoming signal pair.

Examples
cyile™ 440
Tt ol
i
lp.c2p™
512]
Ip.p2c™
; Loy
it 51z
startwindow E E
dac
See Also
fft~ Fast Fourier transform
ifft~ Inverse fast Fourier transform
Ip.p2c~ Convert polar to Cartesian coordinates
Ip.grl~ Phase unwrapping

22 January, 2002 -17 -

: : Generate random numbers from
Ip.chichi . oers In
o1t Bundles a chi-square distribution

The chi-square ()*) distribution has one parameter, f, the degrees of freedom. It is
defined as the sum of f squared uniform deviates and hence all values from a y?
distribution are greater than or equal to zero. The mean of the x* distribution converges
to f and its standard deviation is +/2f .

The chi-square distribution is frequently used in statistical tests.
Input

bang Generate a random number from a x? distribution and send it out the
outlet.

int In the right inlet: set the degrees of freedom parameter, f.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments

You can initialize an Ip.chichi object with up to two optional integer arguments. You
must specify the first argument if you want to specify the second.

int The first argument specifies an initial value of the degrees of freedom
parameter, f. The default value is one.

The second argument specifies a seed for the core random number
generator. The generator is auto-seeded if this value is 0 (the default).

Output

float A random value from a x*-distribution.

Examples
Lintitled

Ip.chichi 10

s

[lp.gcampi 1 round | -
1:1
—
1:1

A a

tilE 127 n
1] D

Generating random numbers with a y* distribution

What's in a name?

Think of “chichi” as “chi times chi.”

-18 - 22 January, 2002

Generate random numbers from
a chi-square distribution

Ip.chichi

Pro Bundles
See Also
Ip.fishie Generate random numbers from a Fisher distribution
Ip.shhh Generate random numbers from a “white” distribution
Ip.stu Generate random numbers from Student’s t distribution
Ip.shhh Generate random numbers from a “white” distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 -19 -

I .COShy Generate random numbers

from a Cauchy distribution
Pro Bundles

The Cauchy distribution has a single parameter, t. The standard Cauchy distribution is
symmetrical. In some literature reference is made to a positive Cauchy distribution, and
the Ip.coshy object can optionally produce this variant. Although not found in the
literature, |p.coshy supports a negative variant for the sake of symmetry to the positive
form.

Although the standard Cauchy distribution is symmetrical around zero, its mean does
not converge but is undefined. Sooner of later one gets used to this.

Input

bang Generate a random number from a Cauchy distribution and send it out the
outlet.

float In right inlet: sets the value of the parameter 7.
Although the Cauchy distribution is only defined for positive values of t,
negative values and zero are allowed by the Ip.coshy object. Negative
values invert the sign of the resulting deviate. This has little impact on the
(symmetrical) Cauchy distribution but note that this inverts the sign of the
positive and negative variants. When 7 is zero, the distribution
degenerates to the constant zero.

sym These messages specify which variant of the Cauchy distribution to use.

pos The sym message causes standard (symmetrical) Cauchy-distributed

neg deviates to be generated, the pos message causes positive Cauchy-
distributed numbers to be generated, and the neg message causes
negative Cauchy-distributed numbers to be generated.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments
You can initialize an Ip.coshy object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:
float Specify an initial value for 1. The default is one.
sym Any of these specifies which variant of the Cauchy distribution to use. The
pos default is sym.

neg

int Specify a seed for the core random number generator. The generator is
auto-seeded if this value is zero (the default).

Output

float A random value from a Cauchy distribution.

-20- 22 January, 2002

Generate random numbers from
a Cauchy distribution

Ip.coshy

Pro Bundles
Examples
[0 == untitled ==H B
s A
kil 127 [
£
T
llm zramni 1 A4 1:1
-+
1:1 -
. T e o]
T4 127
[~ |
1]]z

O Untitled =——=FHEH
:::%::: 12? i
Ip.coshy 10 pos ﬂ
s T
e ———— 141
Ip.zzampi 1 .o
11
e o
tel g 127 ||
q] > [z

Generating random numbers with a positive Cauchy distribution

What's in a name?

I'm told some people pronounce it that way.

See Also

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 -21-

I pd | Cey Throw dice

Pro Bundles

Throw any number of “dice” with any number of faces.

Given n dice, each having f faces numbered from one to f, the resulting value will be in
the range 1 < x < nf.

If n is sufficiently large, the distribution will approaches a Gaussian distribution with a

nf +1
mean value of >

Input

bang Throw the dice (i.e., choose one face from each die at random), add up the
dots, and send the result out the outlet.

int In the middle inlet: set the number of dice, n. This value should be
positive. If n is zero, the distribution degenerates to a constant zero.
Negative values of n are treated as zero

In the right inlet: set the number of faces for each die. This value should be
two or greater, otherwise the distribution will degenerate to a constant
equal to the number of dice. (This is equivalent to having single-faced
dice, something of a topological nightmare.)

Note that using two-faced dice (in other words, a coin) is the equivalent of
performing a Bernoulli test with a probability of 0.5 for “success.”

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments
You can initialize an Ip.dicey object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the

second to specify the third. The arguments, in order, are:

int The first argument specifies an initial value for the number of dice.
Negative values and zero are ignored. The default value is two.

The second argument specifies an initial number of faces for each die.
Negative values and zero are ignored. The default value is six.

The third argument sets the value for the seed of the core random number
generator. The generator is auto-seeded if this value is zero (the default).

Output

int The sum of the dots on the faces chosen from the individual dice.

-22- 22 January, 2002

Throw dice

Ip.dicey

Pro Bundles
Examples
- 127
Ipdicey & & T
11
—
1:1
- . u] -
g 127 -
1] aF
Rolling the dice
See Also
Ip.bernie Generate random numbers from a Bernoulli distribution
Ip.norm Generate random numbers from a normal (“Gaussian”) distribution
Ip.ernie Select items from an urn (“Finite urn” probability model)
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 -23-

Select items from an urn

|P-em 1€ (“Finite urn” probability model)

Pro Bundles

The Ip.ernie object implements a very flexible general-purpose “finite urn” model.

The typical finite urn model deals with colored balls in an urn. For instance, there
might be three red balls, two black balls, and four white balls. Balls are removed one at
a time. They are not replaced after removal. As balls are removed, the probabilities of
picking each color change. The characteristics of the urn model are the concern with the
changing probabilities and the fact that the total number of balls is known.

Instead of colors, an Ip.ernie object deals “balls” numbered starting at zero. The model
described above might be represented in Ip.ernie by three balls with the value 0, two
balls with the value 1, and four balls with the value 2. When an Ip.ernie object receives
a bang message, a ball is taken at random from the urn and its value is sent out the
outlet. The ball is not returned to the urn until all balls have been used up (that is, the
urn automatically refills itself when it has been emptied). In a sense, the standard table
object can be used for implementing an infinite urn model; Ip.ernie implements the
finite urn model in an analogous manner.

Typically, the distribution of the balls in the urn will be read in from a table object
using the refer message, but there are other messages for controlling the state of an
Ip.ernie object.

Input
bang Remove a ball from the urn and send the ball’s value out the outlet.

If the urn is empty it will automatically reset (cf. the reset message) and a
bang is sent out the right outlet.

refer The symbol refer followed by the name of a table object will cause Ip.ernie
to read values from the named table. The value in the table for zero will
determine how many balls numbered zero are in the urn, and so on for
each kind of ball. Typically, the table size will be the same as the size of
the Ip.ernie object. If the table size is smaller than the Ip.ernie object, the
ball types not defined will all be set to zero. If the table size is larger, the
table values higher than the last kind of ball will be ignored.

set The symbol set, followed by a list of numeric values, sets the number of

each kind of ball in the urn. The first numeric value defines the number of

balls of type zero, the second numeric value defines the number of balls of
type one, and so on. Any symbols interspersed in the list will be
interpreted as zero.

clear The symbol clear empties the urn: the count of every king of ball is set to
zero zero. The symbol zero is a synonym for clear.

const The symbol const followed an integer will set the number of every kind of
ball to the value specified. If no integer is explicitly specified, the default
value zero is used (thereby providing yet another synonym for the clear
message).

reset Refills the urn. That is, the Ip.ernie object is returned to the state defined
by the last refer, set, clear, or const message.

-24 - 22 January, 2002

Select items from an urn -
(“Finite urn" probability model) Ip'ern 1€

Pro Bundles

size The symbol size followed by an integer sets the number of different kinds
of balls. It does not change the counts of the kinds of ball remaining in the
urn. If the number of different kinds of ball is increased (that is, the size
parameter is greater than before), the new kinds of ball are set to zero
count.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments

You can initialize an Ip.ernie object with up to two optional arguments. You must
specify the first argument if you want to specify the second. The arguments, in order,
are:

int The first argument specifies the “size” of the urn (that is, how many
different kinds of ball to use). The default value is 128, following the MIDI-

oriented convention of the table object.
The second argument sets the value for the seed of the core random

number generator. The generator is auto-seeded if this value is zero (the
default).

Output

int The value of a ball chosen at random from the urn. The ball is not returned
to the urn until all balls have been used up.

Examples

[0 =——=forErnie 5] =]
127 :
|r'efer' forErnie |
table forErnie
- a |
127 i
[z

Reading values for Ernie from a table

What's in a name?

A deliberate misspelling.

22 January, 2002 -25-

Select items from an urn

Ip.ernie i -

B Bundles (“Finite urn” probability model)
See Also

table Store and graphically edit an array of numbers

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-6 - 22 January, 2002

Generate random numbers from
an exponential distribution

Ip.expo

Pro Bundles

The exponential distribution is typically used to model waiting times between Poisson-
distributed events. It has one parameter, the mean time between events, generally
named A. In the literature the distribution is sometimes described in terms of mean
density of events (i.e., 1/A) and the parameter may be named & or t. The density is
what is actually used while calculating the distribution, but to maintain consistency with
the interface to the Ip.pfishie object, Ip.expo object interprets its parameter as the mean.
There is a tau message to allow direct specification of the density.

The exponential distribution only produces non-negative values. A variant form, known
variously as the “bilateral exponential” or “Laplace” distribution, generates a
distribution symmetrical around zero. Both of the bilateral and standard exponential
distributions can be generated with Ip.expo. Out of symmetry to the standard
“positive” variant, a negative variant can also be generated.

Input
bang Generate a random number from an exponential distribution.

float In the left inlet: A value in the range 0 < x <1 will be transformed using
the formula

f(x)= _71 log(X) for the symmetry option pos,
f(x)= % log(x) for the symmetry option neg, and

_—1Iog(2x) if0<x<05
f(x)=]/_1 for the symmetry option sym.
zlog(Zx—l) if0.5<x<10

Assuming the input values are uniformly distributed, the output values
will be exponentially (or bilaterally) distributed according to the current
value for A.

In the right inlet: specify the mean value (A). Note that in the case of the
bilateral distribution, the mean is always 0, regardless of the current value
of L. However, A still determines the variance (“spread”) of the
distribution.

sym These symbols set the symmetry option. The symbol pos causes Ip.expo to
pos produce deviates with the standard exponential distribution. The symbol

neg sym generates a bilateral exponential (“Laplace”) distribution. The symbol
neg produces the negative reflection of the standard exponential
distribution.

tau The symbol tau followed by a floating point value allows you to directly
specify the distribution density. Sending the tau message with a value of

1/X is equivalent to sending the value A to the right inlet.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

22 January, 2002 -27 -

Generate random numbers from
Ip.expo Y

an exponential distribution
Pro Bundles

Arguments

You can initialize an Ip.expo object with up to three optional arguments. You must
specify the first argument if you want to specify if you want to specify the second and
you must specify the second to specify the third. The arguments, in order, are:

float Specify an initial value for the mean value (A) of the distribution. The
default is one.

sym Any of these symbols will specify an initial value for the symmetry option.
pos The default value is pos.
neg

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from an exponential distribution.

Examples

expo——=—0H
L 127 |

Scale the [continuous, real) -

walues and convert to an int J_L

for Histo and table. 1:1

+' e v | —
] 127 -
4] AP

Generating random numbers with an exponential distribution

See Also

Ip.pfishie Generate random numbers from a Poisson distribution

Ip.gammer Generate random numbers from Gamma and Erlang distributions
Ip.hyppie Generate random numbers from a hyperbolic cosine distribution
Ip.linnie Generate random numbers from linear and triangular distributions
Ip.loggie Generate random numbers from a logistic distribution

Ip.lonnie Generate random numbers from a log-normal distribution

Ip.ppp~ Popcorn (dust) noise

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-28 - 22 January, 2002

Generate random numbers from IpflShle

a Fisher distribution
Pro Bundles

The Fisher distribution has two “degrees of freedom” parameters, normally designated
f; and f,. The distribution is generated by dividing values taken from two independent

chi-square distributions and can take on arbitrary floating point values.

The distribution is commonly used in statistical tests.

Input
bang Generate a random number from a Fisher distribution and send it out the
outlet.
int In the middle inlet: Set the value of the f; parameter.
In the right inlet: Set the value of the f, parameter.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments

You can initialize an Ip.fishie object with up to three optional integer arguments. You
must specify the first argument if you want to specify the second and you must specify
the second to specify the third. The arguments, in order, are:

int ~ The first and second integers specify initial values for the f; and f,
parameters, respectively. The default value for both is 1.

A third integer sets the value for the seed of the core random number
generator. The generator is auto-seeded if this value is zero (the default).

Output

float A random value from a Fisher distribution.

Examples

0 =—=tishie === =]

Convert lp.fishie's ﬂ

output to int for ||

: Histo and table. 1:1

rH|5t-:| %
i o -
1 g 127 -
|tal:-|e fizhie | 4] [» [z

Generating random numbers with a Fisher(2, 2) distribution

22 January, 2002 -29 -

I fiShie Generate random numbers

from a Fisher distribution
Pro Bundles

What's in a name?

This one seems sort of obvious.

See Also

Ip.chichi Benerate random numbers from a chi-sqaure distribution
Ip.stu Generate random numbers from Student’s t distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-30 - 22 January, 2002

Frequency domain interval I p frl me-~

mutation Pro Bundles

The Frequency-domain Interval Mutator is a variant of the Time-domain Interval
Mutator (Ip.tim~) object, modified in two ways to better handle frequency-domain
signals (for instance, signals produced by the fft~ object).

First, the fft~ object produces two signals, the real and imaginary components of a
Fourier Transform, that need to be handled in parallel. While this could be handled
adequately for uniform mutations with two Ip.tim~ objects, with irregular mutations it is
normally desirable to synchronize the mutation of both components. So, Ip.frim~
provides pairs of inlets for Source and Target signals, and all mutations are performed
equally on both components.

Second, when performing any mutation on relative intervals, the Ip.tim~ object
calculates intervals between successive samples from the Source and Target signals. But
the interval between adjacent samples of a signal output by fft~ represent values of
adjacent bins in the same FFT sample frame, whereas the interval that is normally
desired is the interval from bin-to-bin across sample frames. In other words, a Ip.tim~
object would calculate the interval function A(S[frame, bin], S[frame, bin-1]), whereas
what is wanted is A(S[frame, bin], S[frame-1, bin]). In terms of MSP signals, this means
that one needs to specify a distance between interval samples equal to the sample size
parameter used by the .fft~ object generating the FFT signals to be mutated. The
Ip.frim~ object allows you to specify this distance as an initialization parameter.

Note that, unlike the fft~ /ifft~ objects, Ip.frim~ makes no automatic corrections for
Sample Size arguments; it is quite possible that you may wish to experiment with effects
produced by “non-standard” values. Note also that if no interval distance argument is
specified, the interval distance defaults to zero, which indicates a “hard-wired” use of
absolute intervals (that is, you will not be able to switch to relative intervals).

Finally, those familiar with the implementation of Spectral Mutation as found in
SoundHack should be aware that fft~ represents the spectral signal using complex
Cartesian coordinates (real and imaginary pairs) as opposed to a representation of
amplitude and phase, used most spectral processing software,. The Ip.c2p~ and Ip.p2c~
objects, included in the Litter package, perform this conversion, additionally the Ip.grl~
object will perform the phase unwrapping typically calculated as part of the Fourier
Transform. The effect of most mutations can be quite different with these two different
representations. Irregular mutations on absolute intervals should be identical between
both representations.

22 January, 2002 -31-

| fr| m-~ Frequency domain Interval

Pro Bundles

Mutation

Input

-32 -

signal

float

usim
isim
uuim
iuim
wcm
lcm

rel

abs

In 1st Inlet and 2nd Inlets, the mutation source (real and imaginary
components respectively. Both signals are mandatory if you want anything
to happen).

In 3" and 4th Inlets, the mutation target (real and imaginary components
respectively; both signals mandatory if you want anything to happen)

In 5th Inlet, a time-varying Mutation Index (defaults to float input or object
argument if no signal). Mutation Index is limited to the range 0 < Q < 1.

In 6th Inlet, a time-varying Delta Emphasis value (defaults to float input or
object argument if no signal; ignored if the object is using absolute
intervals). Delta Emphasis is limited to the range -1 < d<1.

In 7th Inlet, a time-varying Clumping Factor (defaults to float input or
object argument if no signal; ignored if the object is performing a uniform
mutation). Clumping Factor is limited to 0 < © < 1. For practical purposes
in this implementation, the maximal value for = is clipped to 0.9990234375,
which means that you can expect an irregular mutation with a mutation
index of 0.5 to change state between mutated and non-mutated forms
about once every thousand samples or so.)

In 5th Inlet: sets the Mutation Index (but is overridden if a signal is
present).

In 6th Inlet: sets the Delta Emphasis This value is overridden when a
signal is present and ignored if the object is using absolute intervals.

In 7th Inlet, sets the Clumping Factor. This value is overridden when a
signal is present and ignored if the object is using absolute intervals.
Sending a float to any of the first four inlets elicits an error message in the
Max window.

Set the mutation algorithm to Linear Contour Modulation, Uniform Signed
Interval Modulation, etc.

Use relative intervals for calculating the mutant. This is the default setting.
You can include a float with this message to set Delta Emphasis (the default
value is zero).

If the Ip.frim~ object was initialized with no Interval Distance argument
you can not use Relative Interval.

Use absolute intervals for calculating the mutant.

Note that, unlike interval mutation in SoundHack and other
implementations, the Ip.frim~ object does not support source and target
reference values. If you want source or target intervals to be calculated
against a reference other than zero, you need to send the signals through
+~, *~, or other objects to suit your needs. This gives you greater
flexibility and control than anything Ip.frim~ could offer.

22 January, 2002

Frequency domain interval I p frl me-~

mutation

Pro Bundles

obands

clear

Arguments

symbol

int

float

Output

signal

The obands message causes frequency bins belonging to the same interval
band to be treated as a unit during irregular mutations.

The obands message takes an optional integer parameter in the range 0 <
b < 15. The parameter indicates how many divisions of the octave are to be
treated as a band. The value three produces third-octave bands. The
default value is zero, which indicates that each frequency bin is mutated
independently.

Resets the stored values of previous source, previous target, and previous
mutant to zero. This is often helpful after a mutation has gotten chaotic.

The symbols usim, isim, uuim, iuim, wem, and Icm can be used to specify
the initial mutation algorithm to use. The default is usim.

Interval Distance to use when calculating relative intervals. Normally you
would set this to the same value as the Sample Size in the fft~ objects
generating the Source and Mutant signals. Unlike the fft~ objects,
however, Ip.frim~ does not “auto-correct” values to the closest power of 2,
allowing you to experiment with unusual interval distances. Like fft~, a
maximum setting of 2048 is enforced.

Note that Ip.frim~ requires over twice as much memory as an fft~ object
using the same sample size. A complete set of two fft~s, a Ip.frim~, and an
ifft~ with all objects set to 2048 will require memory allocation of over 80
kB. Aren’t you glad that memory is cheaper than it used to be?

Up to three float arguments can be included to specify (in order) Mutation
Index (Q), Delta Emphasis (this is ignored when absolute intervals are
used), and Clumping Factor (this is only used by irregular mutations). All
default to 0.0.

Mutant signals out of the left and middle outlets. The signal in the left
outlet is the mutant of the 1* and 3™ inlets; the signal in the middle outlet
is the mutant of the 2"¢ and 3™ inlets.

22 January, 2002 -33 -

Frequency domain Interval

Ip.frim~

Mutation

Pro Bundles

Examples
Source =signal, after Target signal goes ta Futation index
Fourier transform, second pair of inlets o5 Clurnping indes. lqnored
goes ta first two inlets, after Fourier transform. D with ﬂni?’orm mut?ations.

Bo. | [ewcle” 440]] 0o
i ; e S pos | _

E |re| $1 | |pIp FTS1Z2 | plpFTS12 m Delta Emphasiz. lqnored
3 T . when using absalute
|lp.firim™ lomn 512 | intetvals.
pIpFTS1Z

0
- H
startwindow ! H
: a

stop 4 H

5 H

i

Using Ip.frim~ to perform spectral mutation.
Fast Fourier Transform with Cartesian-to-polar coordinate conversion and phase
unwrapping is encapsulated in the patchers 1p.FT512; conversion back to Cartesian
coordinates and inverse FFT is encapsulated in the Ip.IFT512 patcher.

What's in a name?

Abbreviation for FRequency domain Interval Mutation

See Also

Ip.c2p~ Convert Cartesian to Polar coordinates
Ip.grl~ Phase unwrapping

Ip.p2c~ Convert polar to Cartesian coordinates
Ip.tim~ Time domain interval mutation
Ip.vim Interval mutation of numeric values

Polansky, Larry, “Morphological Metrics: An Introduction to a Theory of Formal
Distances” (paper presented at the International Computer Music Conference,
Champaign-Urbana, 1987), 197-204.

Polansky, Larry and Tom Erbe, “Spectral Mutation in SoundHack: A Brief Description”
(paper presented at the International Computer Music Conference, Banff, Canada, 1995),

307-314.

Polansky, Larry, “Morphological metrics,” Journal of New Music Research (formally
Interface) 25 (1996): 289-368.

-34 - 22 January, 2002

Low-frequency noise I

p.frrr~

Pro Bundles

Low-frequency noise is generated from a sequence of random values chosen at a
constant rate slower than the sampling rate. In its simplest form, it functions as a noise
generator passed through a sample-and-hold module. However, Ip.frrr~ also allows the
samples between the randomly generated values to be interpolated, either linearly or
quadratically.

The rate at which random values are generated is specified in Hz; Ip.frrr~ adjusts the
actual rate of generation to be an integral number of samples.

The Ip.frrr~ object can also be used to good effect for control signals.

Input

signal Signal processing provided for the benefit of begin~ /selector~
configurations.

float In left inlet: set the base frequency. Note that the actual frequency used
may be adjusted by Ip.frrr~ to match an integral sub-harmonic of the
sampling rate.

int Inright inlet: zero, one, or two. Zero indicates no interpolation between
generated values, one indicates linear interpolation, and a value of two
indicates quadratic interpolation. Negative values are treated as zero;
values larger than two are treated as two.

Arguments
You can initialize an Ip.frrr~ object with up to two optional arguments. You must
specify the first argument if you want to specify the second. The arguments, in order,
are:
float The first argument specifies an (approximate) initial setting in Hz for the
base frequency at which new random values are generated. The default
value is 100.
int The second argument specifies an initial value for interpolation, which

should be either zero, one, or two. The default value is zero (no
interpolation).

Output

signal Low frequency noise.

22 January, 2002 -35 -

I _frrr... Low-frequency noise

Pro Bundle

Examples

EHJD_ | [I:Iuadratic Interpalation]

Ip.frre™ 100,

A 1000,
+~ 1500.

i
i
startwindow | i m

Using low-frequency noise as a control signal.

What's in a name?

Low-FRRRequency noise.

See Also

Ip.grrr~ “Gray” noise

Ip.lli~ Parametric linear congruence “noise”
Ip.pfff~ “Brownian” (1/f) noise

Ip.ppp~ Popcorn (dust) noise

Ip.shhh~ White noise

Ip.sss~ “Pink” noise (Voss/Gardner algorithm)
Ip.zzz~ “Pink” noise (McCartney algorithm)
noise~ Another source of noise

pink~ Another source of pink noise

-36 -

22 January, 2002

Generate random numbers from
Gamma and Erlang distributions

Ip.gammer

Pro Bundle

The Gamma distribution has two parameters, generally referred to as order and location.
It produces an asymmetrical distribution of positive random values, and is often used in
musical contexts for generating rhythms. The order parameter must be positive, the
location parameter may be zero or positive.

The Erlang distribution is a special case of the Gamma function when the order
parameter is an integer. This distribution is modeled on a process consisting of several
independent exponentially-distributed sub-processes. In this case, the order parameter

indicates the number of sub-processes. An Erlang distribution with order of one is
equivalent to an exponential distribution.

Input
bang Generate a random value from a Gamma or Erlang distribution.
float In the middle inlet: Set the value of the order parameter
In the right inlet: Set the value of the location parameter.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments
You can initialize an Ip.gammer object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the

second to specify the third. The arguments, in order, are:

float The first two arguments specify initial values for the order and location
parameters (respectively). Both parameters default to one.

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a Gamma distribution.

Examples

1=
m

gammer

12

-1

127

S[4]

b

Generating random numbers with a I'(4, 3.5) distribution

22 January, 2002 -37-

Generate random numbers from
Gamma and Erlang distributions

Ip.gammer

Pro Bundles

What's in a name?

Portmanteau word derived from the first syllables of the two distributions implemented.

See Also
Ip.expo Generate random numbers from an exponential distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

Ahrens, Joachim H. and Ulrich Dieter, “Generating Gamma Variates by a Modified
Rejection Technique,” Communications of the ACM 25, no. 1 (1982): 47-54.

-38 - 22 January, 2002

/ Ching Ip.ginger

All Bundles

Choose numbers in the range 1 < x < 64 using the methods from the | Ching, the Book of
Changes.

Traditionally, there are two different methods for consulting the | Ching. The more
commonly used one consists of tossing three coins six times, with each toss of three coins
determining the value of a “line”, which may either be yang (unbroken) or yin
(broken). The six tosses generate six lines that, taken together, form a hexagram.
Depending on how the coins fall, each line may be either stable or instable. Instable
lines change their value between the present and the future, thereby resulting in two
hexagrams.

The older method of consulting the | Ching consists of throwing yarrow sticks to divide
them into two piles. The number of sticks in each pile determines the value of a single
line (yin or yang, stable or instable).

The Ip.ginger object allows you to use either of these two methods. Those concerned
with mysticism will be relieved to know that Ip.ginger follows the instructions stated in
the | Ching as far as possible, including such details as having 50 yarrow sticks at its
disposal but only throwing 49 of them. The Ip.ginger object does everything except
burn incense for you (and we’re working on that).

It is worth noting that the method modeled on throwing yarrow sticks does not result in
a flat distribution. In particular, there are some striking correlations between present
and future values. This is as it should be.

The Ip.ginger object sends both present and future oracles as numbers out the left and
middle outlets, respectively. It also sends a list indicating exactly how the coins fell (or
how the yarrow sticks were divided) out the right outlet.

Input

bang Consult the | Ching. Coins will be tossed or yarrow sticks thrown, divided
into piles, and counted. The resulting values of the hexagrams are
determined and sent out the two left outlets. Additional details are sent out
as lists through the right two outlets.

A bang message should typically be preceded by meditating on the
question you wish to have answered, but this is optional.

coin Generate a new oracle using the method specified. The coin message
yarrow causes the method based on tossing coins to be used; the yarrow message
causes the method based on throwing yarrow sticks to be used. The

method specified becomes the method to be used by bang messages.

set The symbol set followed by either coin or yarrow determines the method
to be used to consult the | Ching. No oracle is generated.

zen You may use this message to meditate.

Arguments

symbol Either of the symbols coin or yarrow may be used to specify the initial
method to be used for generating oracles. This argument is optional; coins
are tossed by default.

22 January, 2002 -39 -

Ip.ginger / Ching

All Bundles

Output

int Left outlet: a number in the range from 1 to 64 indicating the hexagram
determined by the six lines

Middle outlet: a number in the range from 1 to 64 indicating the hexagram
determined by the six lines after any instable lines have changed from yin
to yang (or vice versa).

list Right outlet: A list consisting of eighteen values. The individual values
will be either two (representing yang) or three (representing yin). If the
method of tossing coins is used, these will represent the individual coin
tosses (the first three items representing the coins tossed to determine the
first line, etc.). For yarrow sticks, this represents the result of counting the
sticks in each pile after each throw of the sticks.

Examples

Ip.qinger

T EE

Dipslay oracle of the present and the future

What's in a name?

The transliteration of the Chinese for Book of Changes, used by Richard Wilhelm in his
seminal translation, is | Ging.

See Also
Ip.i Text of I Ching oracles
Ip.kg Map I Ching values to non-standard ranges

Peter Elsea’s Lobjects may be useful for processing the details of the oracle.

| Ging, trans. Richard Wilhelm (Munich: Eugen Diederichs, 1973).

I Ching or Book of Changes, trans. by Cary F. Baynes (from the German translation with
commentaries by Richard Wilhelm). (Princeton, New Jersey: Princeton University Press,

1967).

Cage, John. Silence. (London: Marion Boyars, 1987).

-40 - 22 January, 2002

Phase unwrapping I p . rl -

All Bundles

This is a utility object, designed primarily for calculating the phase unwrapping
typically performed as part of the Fourier Transform in spectral analysis. It could,
conceivably, be used for other purposes.

Input
signal
float

pi,

clear

Arguments

int

float

Output

signal

(Wrapped) phase.
Sets the threshold value for unwrapping.

Special messages for setting the threshold to 11 or some multiple thereof. If
followed by an integer, the threshold will be set to that multiple of 1. (For
instance, to set the threshold to 21, send the message ‘pi 2".)

Clears the buffer of stored previous samples, setting them all to zero.

Distance between samples to compare before unwrapping; typically equal
to the sample size used by the corresponding fft~ object.

Note that, unlike the fft~ object, Ip.grl~ does not automatically adjust this
parameter to a legal FFT sample size. Furthermore, if no value is specified,
this argument defaults to 1 (which, in terms of a Fourier Transform, would
result in “unwrapping” phase comparing adjacent bins). The maximum
value for this parameter is arbitrarily set to 2048. This is, perhaps
conveniently, the maximum sample size supported by the fft~ object.

Threshold allowed between pairs of samples. If the interval between a pair
of samples (at the distance defined by the integer argument) is larger than
this threshold, the signal is unwrapped (that is, the complementary value
threshold -0 is used). The default value is .

Unwrapped phase

22 January, 2002 -41 -

Ip.gri~

Pro Bundles

Phase unwrapping

Examples

cyle™ 440

=] .
=il
#
on
g

=l
o
)
=
]

=
|1:‘|

[

o
i.

lpgrl™ 512

F

=
=
¥

startwindow
e

Elo

‘i

n
)

Unwrapping phase while converting Cartesian to polar coordinates

What's in a name?

In honor of one of the great unwrappers of all time: Gypsy Rose Lee.

See Also
Ip.c2p~ Convert Cartesian to polar coordinates
Ip.p2c~ Convert polar to Cartesian coordinates
fft~ Fast Fourier transform
ifft~ Inverse fast Fourier transform

-40 -

22 January, 2002

“Gray" noise I
(Control domain)

p.grrr

Pro Bundles

This is a control-domain version of the Ip.grrr~ signal generator. It generates values in
the range 0 < x < 1.

Input
bang

seed

Arguments

int

Output

float

Generate a random value with “gray” distribution.

The symbol seed followed by an integer reseeds the internal random
number generator.

Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

A random value in the range 0 < x < 1.

What's in a name?

See Ip.grrr~.
See Also

Ip.grrr~
Ip.pfff
Ip.shhh
Ip.sss
Ip.zzz
Ip.scampi
Ip.tata

“Gray” noise

Generate random numbers from a 1/f* (“Brownian”) distribution
Generate random numbers from a “white” distribution

Generate random numbers from a 1/f (“pink”) distribution
Generate random numbers from a 1/f ("pink”) distribution
Scale, offset, and limit numbers; output integers

Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 -43 -

- “Gray" noise
Ip.grrr (Sianal

Pro Bundles

Gray noise results from flipping random bits of an integer representation of the sample
signal on a sample-to-sample basis. The spectrum is stronger towards lower frequencies.

Input
signal Signal inlet provided solely for the benefit of begin~ /selector~
configurations.
Arguments
None

Output

signal Gray noise

Examples

= cycle

=

fra)
=
=
=

pry N
F
=
=
= v|
pry I

H

[t

i E

T i
z =
startwindow ! i
P stop i
5
dac
Using Ip.grrr~ as a noise source. Using Ip.grrr~ as a control signal

What's in a name?
GRRRay noise.
This particular “colored” noise seems to have been named not so much due to

associations with light (as is the case of white or pink noise) but because of a certain
similarity to the Gray Code.

See Also

Ip.frr~

Ip.grrr “Gray” noise (control domain)

Ip.lli~ Parametric linear congruence “noise”
Ip.pfff~ “Brownian” (1/f?) noise

Ip-ppp~ Popcorn (dust) noise

-44 - 22 January, 2002

“Gray" noise

Ip.grrr~

(Slgna/) Pro Bundles
Ip.shhh~ White noise
Ip.sss~ “Pink” noise (Voss/Gardner algorithm)
Ip.zzz~ “Pink” noise (McCartney algorithm)
-45 -

22 January, 2002

Ip hypp|e Generate random numbers from
. a hyperbolic cosine distribution

Pro Bundles

Input

bang Generate a random number from a hyperbolic cosine distribution and send
it out the outlet.

float A value in the range 0 < x <1 will be transformed using the formula
f(x) = log(tan(x))
Values outside the range are ignored.

Assuming that input values are uniformly distributed, the output values
will follow a hyperbolic cosine distribution.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a hyperbolic cosine distribution.

Examples
gethypp ——EIB
127 -
Center the output in Histo's
range (thiz alzo converts
Ip.hyppie’s output to an
e integer). ||
I = |z
table getHypp Oz

Generating random numbers with a hyperbolic cosine distribution

[notein |

[il
BC*s | [lp.scampf |
Ip.hyppie

Ip.scampi 24 &4

[pag | [noteout |

Mapping MIDI input.
Decide for yourself if this is more fun with local control on or off

What's in a name?

Hypperbolic cosine is hypp. Get it?

-46 - 22 January, 2002

Generate random numbers from -
a hyperbolic cosine distribution hypple

Pro Bundles
See Also
Ip.linnie Generate random numbers from linear and triangular distributions
Ip.loggie Generate random numbers from a logistic distribution
Ip.lonnie Generate random numbers from a log-normal distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 _47 -

Ip.i

Pro Bundles

Text of | Ching oracles

The discussion presumes some familiarity with the use of | Ching. An in-depth
introduction is beyond the scope of this document, please consult the bibliographic
references in the See Also section for further background.

Input

-48 -

bang

int

set

name

Generate a new fortune and send the texts of the oracle out the outlet as a
sequence of symbols.

Note that if Ip.i was initialized with explicit hexagram numbers as
arguments, bang outputs text without generating a new fortune.

In left inlet: An integer between 1 and 64 will set a new value for the main
hexagram and cause Ip.i to send the texts of the fortune out the outlet. All
other values are ignored.

In right inlet: An integer between 1 and 64 will set a new value for the
future hexagram. All other values are ignored.

The symbol set followed by an integer changes the current value of the
main hexagram without causing the text of the fortune to be output.

Optionally, a second integer may be included with the set message. If
included, it will set the value of the future hexagram.

Values outside the range of 1 to 64 are ignored.
The symbol name causes a list of symbols for the name of the main
hexagram to be sent out the outlet. Optionally, an integer may be included
in the message, specifying which components of the name to include
(“name options”). This integer is the sum of the following values:

1: Include hexagram number

2: Include name of hexagram in transliterated Chinese

4: Include name of hexagram in English
You can also use the value -1 to indicate all three components.
Each component is represented as a single symbol.
The name options will remain in effect until changed with another name

message. The Ip.i object will not allow you to suppress all name options; at
least one component will always be generated.

22 January, 2002

Text of | Ching oracles I i

Pro Bundles

trigrams The symbol trigrams causes a sequence of lists of symbols to be sent out the
outlet. These symbols describe the trigrams contained in the main
hexagram. Optionally, an integer may be included in the message,
specifying which trigrams to include (“trigram options”). This integer may
take on the following values:

0: Suppress all trigrams
1: Output the main (top and bottom) trigrams
2: Output all trigrams (also the two middle trigrams)

You can also use the value -1 to indicate all trigrams.

Each trigram is represented as a list of three symbols. The first symbol
indicates the position of the trigram (above, below, upper middle, lower
middle). The second symbol is the name of the trigram (in transliterated
Chinese). The third symbol is the meaning of the symbol (in English)

The trigram options will remain in effect until changed with another
trigrams message.

judgement The symbol judgement causes a sequence of symbols representing the
judgement of the current main hexagram to be sent out the outlet. The first
symbol is The Judgement. It is followed by symbols with the text of the
judgement, one line of text per symbol.

image The symbol image causes a sequence of symbols representing the image of
the current main hexagram to be sent out the outlet. The first symbol is

The Image. It is followed by symbols with the text of the image, one line of
text per symbol.

22 January, 2002 -49 -

I | Text of | Ching oracles

Pro Bundles

lines The symbol lines causes a sequence of lists of symbols to be sent out the
outlet. These symbols describe lines from the main hexagram. Optionally,
an integer may be included in the message, specifying which lines to
include (“line options”). This integer may take on the following values:

0: Suppress all lines

1: Output texts of changing lines only
2: Output texts of governing lines only
3: Output all lines

You can also use the value -1 to indicate all lines.

Each hexagram line is represented as a sequence of lists of symbols. Each
hexagram line is introduced by a list of four symbols indicating the line
position and its value. The first symbol indicates if the hexagram line is a
ruling line: if the symbol contains the character ¢ the line is a constituting
ruler; if it contains the character ° the line is a governing ruler. The second
symbol is the value of the hexagram line (either Six or Nine). The third
symbol indicates which line is currently being described (at the beginning,
in the second place, etc.). The final symbol is a static text (means:). This is
followed by a sequence of symbols, one symbol per line of text from |
Ching.

The line options will remain in effect until changed with another lines
message.

Arguments

int ~ Two optional ints, specifying initial values for the main and future
hexagrams.

If no initialization arguments are specified, Ip.i generates new hexagrams
every time it receives a bang message.

If one argument is specified, it sets an initial value for both the main and
future hexagrams (that is, the oracle has no changing lines). Bang
messages do not generate new hexagrams; you must explicitly send int or
set messages to change the hexagram values.

If two arguments are specified, the first argument sets an initial value for
the main hexagram and the second sets an initial value for the future

hexagram. Bang messages do not generate new hexagrams; you must
explicitly send int or set messages to change the hexagram values.

Output

Texts of the | Ching.

-50 - 22 January, 2002

Text of | Ching oracles I i

Pro Bundles

Examples

D = Max="————— E
1930-2001 Cyeling ‘74 £ IRC AR 11673 free | &

IChing: 12. Ku %ork on what has been Spailed (Decay)
IChing: abowe Ken Inaction; The Mountain

IChing : below Sun The Gentle One; %ind, Wood

IChing :

IChing: Gowerning Rulers: Six in the fifth place
IChing :

IChing : The Judgernent

IChing: “W0ORE ON WHAT HA&S EEEM SPOILED

IChing: Hasz supreme success.

IChing: WK furthers one to cross the great water.
IChing: Before the starting point, three days.

IChing: &fter the starting point, three days.

IChing :

IChing : The Image

IChing: The wind blows low on the mountain:

IChing: The image of DEC &Y.

IChing: Thus the superior man stirs up the people
IChing: &nd strengthens their spirit. E

IChing :

print IChing

(| [[

Consulting the I Ching

What's in a name?

This puts the “i” back into the | Ching.

See Also

Ip.ginger I Ching

| Ging, trans. Richard Wilhelm (Munich: Eugen Diederichs, 1973).

I Ching or Book of Changes, trans. by Cary F. Baynes (from the German translation with
commentaries by Richard Wilhelm). (Princeton, New Jersey: Princeton University Press,
1967).

Huang, Kerson and Rosemary Huang, | Ching (New York: Workman, 1987).

Jou, Tsung Hwa, Tao of | Ching: Way to Divination (Boston: Tuttle, 1985)

22 January, 2002 -51-

I k Map | Ching values to non-

L standard ranges

One common way to consult the | Ching when there are less than 64 alternatives is to
ask the | Ching how much weight to assign the individual choices. The | Ching is
consulted for each of the choices wanted, and the hexagram values chosen are assigned
as weights to each choice. Then a range of hexagram values proportional to the weight
of each choice will be assigned. Thereafter, when a hexagram number is chosen from
the | Ching, it is mapped to the choice with the relevant range.

This process is computed for both “present” and “future” | Ching values.

In Ip.kg the choices are numbered starting at one.

Input
int In the left inlet: map this value and a pending “future” input value. Send
the results out the two outlets. If there is no pending future input value,
the present value is used for both the present and future mappings.
In the right inlet: set the value of the pending “future” input.
bang Calculate a new set of mappings.
size The symbol size, followed by positive integer less than 64, will reset the
number of choices available and generate a new set of mappings. The
values generated will range from one to the value specified in the size
message.
Arguments
int Specify an initial size (number of choices) for Ip.kg’s mapping. If no
argument is specified,
Output
int Out the left outlet: mapping of the present input value.
Out the right outlet: mapping of the future input value.
Examples

Mapping I Ching decisions to the values one to four

-52- 22 January, 2002

Map | Ching values to non-
standard ranges kag

Pro Bundles

What's in a name?

The technique described here was described by John Cage and used in works such as
HPSCHD.

See Also

Ip.ginger I Ching

Ip.i Text of I Ching Oracles

Ip.scampi Scale, offset, and limit numbers; output integers

Austin, Larry. “An interview with John Cage and Lejaren Hiller.” Source 4, no. 2 (1968):
11-19. Reprinted in Computer Music Journal 16(4), pp. 15-29, 1993.

Cage, John. Silence. (London: Marion Boyars, 1987).

22 January, 2002 -53 -

I II Parametric linear congruence
A1
method

Pro Bundles

The linear congruence algorithm has been the standard method of generating pseudo-
random numbers since the late 1950s. More recent statistical literature (i.e., since about
1960) has pointed out numerous shortcomings with the algorithm. Despite this, linear
congruence remains the method provided by practically all operating systems and
programming libraries. Max is no exception.

With carefully chosen parameters, LC can produce sequences of numbers that at least
appear random at first glance. However, even with the most carefully chosen
parameters, LC shows a number of correlations that are not in any sense random. For
this reason, the Litter Power Package uses more modern methods that are more
measurably random and robust. The algorithm used by default in the Litter Power
Package is faster, to boot.

The Ip.lili object was created not to bury LC, but to investigate it. You can set the
individual parameters of the formula:

X=X, f+amodm

prev

By adjusting the parameters x,,...,

f, a, and m (referred to in the following as seed, mul,
add, and mod, respectively), you can generate sequences of numbers of greater and
lesser apparent randomness. The default values mirror the parameters used by the Max
random object. Start from there and see what you can get. The length of the cycle of
numbers will be (at most!) equal to mod, but if you're clever at setting the other

parameters you can get much shorter cycles.

A note about integer representation: Max uses signed 32-bit values (i.e., integers in the
range from -2,147,483,648 to 2,147,483,647). The Ip.lili object uses unsigned arithmetic
exclusively, interpreting negative numbers as unsigned 32-bit values. This allows
generation of pseudo-random values over the entire range of 32-bit integers, but the
results may seem a little strange at first sight. If you worry about this, restrict yourself to
parameter values in the range 0 < mod < 2,147,483,647. One nice trick: setting the mod
parameter to zero will generate random numbers across the entire range of 32-bit
values.

Input

bang Generate a new pseudo-random number in the range 0 < x < mod and
send it out the outlet.

int In the left inlet: Set a new value for seed and generate a new pseudo-
random number. The new value is sent out the outlet.

In the left middle inlet: set a new value for the mul parameter.
In the right middle inlet: set a new value for the add parameter.
In the right inlet: set a new value for the mod parameter.
set The symbol set followed by an integer sets a new value for the seed
seed without sending a number out the outlet. You may use seed as a synonym
for set. The set message follows general Max conventions; the seed

message follows the usage of other Litter Power random-number
generators.

-54 - 22 January, 2002

Parametric linear congruence I IIII
method -

Pro Bundles

Arguments

Four integer arguments, all of which are optional. However, you must explicitly specify
the first argument if you want to set the second one, and so on.

int The first argument specifies the initial value of the mul parameter. The
default value is 65,539.

The second argument specifies the initial value of the add parameter. The
default value is 0.

The third argument specifies the initial value of the mod parameter. The
default value is 0, which is interpreted as 4,294,967,296 (that is, the entire
32-bit range is used).

The fourth argument specifies the initial value of the seed parameter. The
default value is 1.

The default values are taken from a common implementation of the linear

congruence algorithm. There has been some informal indication from
Cycling ‘74 that these are the same parameters as used by random.

Output

int A more-or-less random value in the range 0 < x < mod. (But cf. the notes
on signed vs. unsigned representations above).

Examples

bottom? =——<=HE
127 [

Let’s examine

the least

zignificant bits
— o
table bottorn? 127 L j//

The lowest bits of numbers produced with the Linear Congruence method are not
very random...

top7 =—=0EH
127
Let’s examine the high
order bits. Mote that bit-
shifting results in values
in the range -&4 £ = £ 63,
=0 offzet into the standard o
MID| range. o 27 -]
[z

...but the high order bits are pretty random...

22 January, 2002 -55 -

I II Parametric linear congruence
A1
method

Pro Bundles

LC formula x = Cx % S mod 128 with an
initial seed value of 24. The modulo gives
results that can go straight into Histo and
table, but the multiplier is ot well-
chosen for producing random values.

I]
Q24 | |Hista | [Ip.ztacey
|

I [
|table netSoRandorn | Bea |Bi1zo |prz k35

Min. Max. Pean Std. Dew.

notSoRandom = E1 85

127

u]

127

...unless you choose inappropriate parameters.

What's in a name?

See Ip.tata.

See Also

Ip.scampi Scale, offset, and limit numbers; output integers

Ip.tata Generate random numbers using the Tausworthe 88 algorithm
Ip.titi Generate random numbers using the TT800 algorithm

Ip.lli~ Parametric linear congruence “noise”

random Hard-wired linear congruence pseudo-random number generator

Knuth, Donald E., The Art of Computer Programming, Vol. 2 Semi-Numerical Algorithms.

(Reading, Mass.: Addison-Wesley, 1972).

-56 -

22 January, 2002

Generate random numbers from I I inni e

linear and triangular distributions
All Bundles

The Ip.linnie object wraps linear and triangular distributions into one neat package. You
can choose which variant to use through the symmetry option described below.

Input
bang Generate a random number from a linear or triangular distribution.

float A floating point value in the range 0 < x < 1 will be transformed using the
formulae

f(x)=1-+v1-x for the symmetry option pos,

f(x)=vx for the symmetry option neg, and

for the symmetry option sym.

f0 = \2x if0<x<05
1-42x-1 if05<x<10

Assuming the input values are uniformly distributed, the output values
will be from either a linear or triangular distribution.

sym These symbols set the symmetry option. The symbol pos causes Ip.linnie to

pos produce deviates with a linear distribution with positive slope (i.e., values

neg closer to one have a higher probability of occurring). The symbol neg
generates a linear distribution with negative slope. The symbol sym
produces a triangular distribution.

Note that all distributions are in the range 0 < x < 1.

It may be helpful to notice that the negative and positive options refer to
the slope of the density function.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments
You can initialize an Ip.linnie object with up to two optional arguments. You must
specify the first argument if you want to specify the second. The arguments, in order,

are:

symbol Any of the symbols sym, pos, or neg specifies an initial value for the
symmetry option. The default value is neg.

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a linear distribution.

22 January, 2002 -57 -

I Iinni e Generate random numbers from
. linear and triangular distributions

All Bundles
Examples
Untitled === HI B
_ . = |
. *
Lp.scampi conveniently rmaps — o _
lp.linnie’s autput to something |-
Histo and table can use. o i s
1:1 " a
T4l 5 127 =
1| > |-Z

Using Ip.linnie to generate random numbers from a triangular distribution

See Also

Ip.expo Generate random numbers from an exponential distribution
Ip.hyppie Generate random numbers from a hyperbolic cosine distribution
Ip.loggie Generate random numbers from a logistic distribution

Ip.lonnie Generate random numbers from a log-normal distribution
Ip.scampi Scale, offset, and limit numbers; output integers

Ip.shhh Generate random numbers from a “white” distribution

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-58 - 22 January, 2002

Parametric linear congruence I ”|~

1 - n
hoise Pro Bundles

“White” noise using the Linear Congruence algorithm, while allowing you to specify
values for the LC parameters. See Ip.lili for more information on parametric linear
congruence. The Ip.lll~ object works very much like Ip.lili, except that the integral
values produced are scaled to the range -1 < x. <1 for signals. Note that the scaling
factor is calculated relative to the mod parameter, so the maximum power range is
always produced (except for LC cycles that get stuck at a constant... this can happen!).

For many parameter combinations, this cycle of numbers generated may be very short.

In other words, the result may be much closer to pitch than noise. There are many
intermediate signals.

Input

signal Signal processing provided for the benefit of begin~ /selector~
configurations.

int In the left inlet: Set a new value for the seed parameter.
In the left middle inlet: Set a new value for the mul parameter.
In the right middle inlet: Set a new value for the add parameter.

In the right inlet: Set a new value for the mod parameter.

Arguments

int Four integer arguments, all of which are optional. However, you must
explicitly specify the first argument if you want to set the second one, and
SO on.

The first argument specifies the initial value of the mul parameter. The
default value is 65,539. The second argument specifies the initial value of
the add parameter. The default value is 0. The third argument specifies the
initial value of the mod parameter. The default value is 0, which is
interpreted as 4,294,967,296 (that is, the entire 32-bit range is used). The
fourth and final parameter specifies the initial value of the seed parameter.
The default value is 1.

The default values are taken from a common implementation of the linear

congruence algorithm. There has been some informal indication that these
are the same parameters as used by noise~.

Output

signal Depending on the current parameters, anything from vaguely white noise,
through noisy pitched signals, to pure pitch.

22 January, 2002 -59 -

| . | | | ~ Parametric Linear Congruence

1 H 14
noi
Pro Bundles o1s€
Examples
§_41 4942282 | “ou can alter the seed to whatever you want. 4 seed of
0 iz often not very "noisy™.
§_1 551099850 Multiply previous seed by this walue when generating

next nurnber. In general this should be an odd number.

§_21 45554554 Add this when generating next number.

[1432747464 Take result modulo this when generating next number.
Maodulo of O interpreted as 4, 294, 957, 296,

|star’twindn:-w ILFLl
|5tn:-|:| | 0.

] .

You may want to experiment with different values.

What's in a name?

I don’t know what got into me the day I named this one.

See Also

Ip.frrr~ Low-frequency noise

Ip.grrr~ “Gray” noise

Ip.pfff~ “Brownian” (1/f) noise

Ip.ppp~ Popcorn (dust) noise

Ip.shhh~ White noise

Ip.sss~ “Pink” noise (Voss/Gardner algorithm)
Ip.zzz~ “Pink” noise (McCartney algorithm)
noise~ Another source of noise

Knuth, Donald E., The Art of Computer Programming, Vol. 2 Semi-Numerical Algorithms.
(Reading, Mass.: Addison-Wesley, 1972).

-60 - 22 January, 2002

Generate random numbers from |p|0gg|e

a logistic distribution Pro Bundles

The logistic distribution has two parameters, a location parameter named o and a scale
parameter named P (in some literature, the equivalent Roman letter names are used). It
is symmetric around its mean value (-B/ o).

Input
bang Generate a random number from a logistic distribution.

float In the left inlet: A floating point value in the range 0 < x <1 will be
transformed using the formula

1-x
-B- In(T)

fa,/} (X) = o

Assuming the input values are uniformly distributed, the output values
will have a logistic distribution.

Input values outside the defined range are ignored.

In the middle inlet: set the value of a.

In the right inlet: set the value of B.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments
You can initialize an Ip.loggie object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:

float ~ Specify an initial value for the o parameter. The default value is one.

float Specify an initial value for the B parameter. The default value is zero.

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a logistic distribution.

22 January, 2002 -61 -

. Generate random numbers from
Ip.loggie

510 Bundles a logistic distribution
Examples
[0 =" ggie=——H1H
r_ 127
g Jogaie 025 16 | I
|int | Change output to an
integer for Histo, TT
Histo TT
=S : o a n
14 = =
table loggie q] v %

Generating random values with a logistic distribution

See Also
Ip.expo Generate random numbers from an exponential distribution
Ip.hyppie Generate random numbers from a hyperbolic cosine distribution
Ip.linnie Generate random numbers from linear and triangular distributions
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-62 -

22 January, 2002

Generate random numbers from |p_|onnie

a log-normal distribution Pro Bundles

The log-normal distribution is derived from the normal (or “Gaussian”) distribution. By
definition, if the logarithm of a set of random variables has a normal distribution, then
the variable has a log-normal distribution. Conceptually, one can think of the log-
normal distribution is as the product of many independent uniform distributions (in
contrast to the normal distribution, which is derived from the notion of summing
independent uniform distributions). The log-normal distribution is often used to model
characteristics such as income distribution, distribution of grain sizes in geological
contexts, and distribution of weight or height in biological contexts.

The log-normal distribution has two parameters: mean and standard deviation. Values
from a log-normal distribution are positive and skewed to the right (i.e., the median is
greater than the arithmetic mean.)

Input
bang Generate a random number from a log-normal distribution.
float In the middle inlet: set the mean.
In the right inlet: set the standard deviation.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments

You can initialize an Ip.lonnie object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:

float Specify an initial value for the mean. The default value is one.

float Specify an initial value for the standard deviation. The default value is
one.

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a log-normal distribution.

22 January, 2002 -63 -

Ip |onnie Generate random num.ber's frc_)m
a log-normal distribution

Pro Bundles
Examples
O lonout =——=—=HH
Conwvert |p.lonnie’s T
output 1o an int for 1:1
Histo and table. =
: - o ||
[o 127 -
table lonQut 4] [b |z

Generating numbers with a log-normal distribution.
The blip at x=102 is Bill Gates.

What's in a name?

LOg-Normal would be lon, but lonnie sounds friendlier.

See Also

Ip.bernie Generate random numbers from a Bernoulli distribution

Ip.norm Generate random numbers from a normal (“Gaussian”) distribution
Ip.scampi Scale, offset, and limit numbers; output integers

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-64 - 22 January, 2002

Generate random numbers from a | norm

normal (“Gaussian”) distribution Al Bundles

This is the standard statistical “bell curve.”

The normal distribution has two parameters: mean and standard deviation.

Input
bang Generate a random number from a logistic distribution.
float In the middle inlet: set the mean.
In the right inlet: set the standard deviation.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments

You can initialize an Ip.norm object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:

float Specify an initial value for the mean. The default value is zero.

float Specify an initial value for the standard deviation. The default value is
zero.

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a normal distribution.

Examples
[= untitled ==
r_ 127
Convert norm's T
autput to int for A
Histo and table. 11 _ _ a
T BT -
1] [z

Generating random numbers with a Gaussian distribution

22 January, 2002 -65 -

I .NOorm Generate random numbers from a

normal (“Gaussian”) distribution

All Bundles

See Also

Ip.bernie Generate random numbers from a Bernoulli distribution

Ip.lonnie Generate random numbers from a log-normal distribution

Ip.shhh Generate random numbers from a “white” distribution

Ip.tata Generate random numbers using the Tausworthe 88 algorithm
- 66 -

22 January, 2002

Convert polar to Cartesian I
coordinates

p-p2c~

All Bundles

This object was developed prior to the availability of the poltocar~ object in MSP
version 2. It is retained in the Litter Power package to allow older Patchers that required
this object to run unaltered and for users of older MSP versions. Conveniently, the
interfaces of Ip.p2c~ and poltocar~ are identical.

Input

signal

Arguments

Output

signal

Examples

See Also

fft~
ifft~
Ip.c2p~
Ip.grl~

22 January, 2002

In left inlet: The amplitude component of a frequency domain signal.

In right inlet: The phase component (in radians) of a frequency domain
signal.

None.

Left outlet: The real component of the Cartesian representation equivalent
to the incoming signal pair.

Right outlet: The imaginary component of the Cartesian representation
equivalent to the incoming signal pair.

cycle™ 440

vl s
=
¥
n

- |N

=l
o
[
-
L]

lpgrl™ 512

¥ 4

=1
o
[l
o

F

E
¥

=
[]

startwindow
]

Converting from Cartesian to polar coordinates

= |
o
|
H

Fast Fourier transform

Inverse fast Fourier transform
Convert Cartesian to polar coordinates
Phase unwrapping

-67 -

I fff Generate random numbers from

2 U . ” . . .
Al Bundles a 1/f° (“Brownian"”) distribution

This is a control-domain version of the Ip.pfff~ signal generator. It generates values in
the range 0 < x < 1.

Input

bang Generate a random value from a Brownian (1/f?) distribution.

seed The symbol seed followed by an integer reseeds the internal random
number generator. (Only available if the object was initialized with a seed
parameter.)

int In second inlet: sets the NN factor. This is a value in the range 0 < nn <31

that controls the “granularity” of the random numbers. For a NN factor of
zero (the default), all bits of the random numbers are random. For other

values, NN indicates the number of low-order bits to mask out before
converting to a floating-point value.

Arguments

int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value in the range 0 < x < 1.

Examples

[zounter O =11 | |Ip.pfff |

| lp.scarnpi |

Lp.pfff's output is zcaled to the range 04 = £ 127
for dizplay in the table window . (If the window iz
[table | hidden, double—click on the table abject.)

NI==————— untitlel=—"———~———— 018

127]

e

ottt)
o . s ..f"“vﬁ\'ww =, Py
. - ;. - I
11

Bl

[n] -
iﬂ 311 5
{] D7

Generating random numbers with a Brownian distribution

- 68 - 22 January, 2002

Generate random numbers from | fff

2 /i H ” H H /
a 1/f° (“Brownian") distribution Al Bundles

What's in a name?

See Ip.pfff~.

See Also

Ip.grrr “Gray” noise (control domain)

Ip.pfff~ “Brownian” (1/f%) noise

Ip.scampi Scale, offset, and limit numbers; output integers

Ip.shhh Generate random numbers from a “white” distribution

Ip.sss Generate random numbers from a 1/f (“pink”) distribution
Ip.zzz Generate random numbers from a 1/f (“pink”) distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 -69-

|p.pfff~ “Brownian" (1/f) noise

All Bundles

Brownian noise is fractal noise with a falloff of about 12 dB per octave.

Input

signal

int

Arguments

int

Output
signal

Examples

Signal processing provided for the benefit of begin~ /selector~
configurations.

NN factor: specifies the number of low-order bits to clear before converting
the integer representation to the floating-point value used in signal

connections. The NN factor for the Ip.pfff~ object may be in the range 0 <
nn < 31.

Optional value to set the initial NN factor. This is zero (no masking) by
default.

Brown noise

F'F'

L
J' I
E ||“h||| ||uh'||||||l

’u

Brownian noise

What's in a name?

Onomatopoeia.

See Also

Ip.frrr~
Ip.grrr~
Ip.li~
Ip.pfff
Ip.phhh~
Ip.ppp~
Ip.shhh~
Ip.sss~
Ip.zzz~
noise~
pink~

-70 -

Low-frequency noise

“Gray” noise

Parametric linear congruence “noise”
Generate random numbers from a 1/f* ("Brownian”) distribution
“Black” (1/£’) noise

Popcorn (dust) noise

White noise

“Pink” noise (Voss/Gardner algorithm)
“Pink” noise (McCartney algorithm)
“White” noise

“Pink” noise

22 January, 2002

Generate random numbers from
a Poisson distribution

Ip.pfishie

Pro Bundles

The Poisson distribution has one parameter, A, which happens to be both the expected

mean and variance. (Standard deviation is therefore ~'1). The Poisson distribution
generates non-negative integers only. It is defined for positive real values of A.

The Poisson distribution was originally developed as an efficient means of
approximating the Bernoulli distribution for special cases (to wit, when the product np is
small even when n is large). It has gained considerable popularity for use in algorithmic

composition, particularly due to the influence of Iannis Xenakis, who used it
extensively.

Input

bang Generate a random number from a Poisson-distributed distribution and
send it out the outlet.

float In the middle inlet: set the value of A.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments

You can initialize an Ip.pfishie object with up to two optional arguments. You must
specify the first argument if you want to specify the second.

float The first argument specifies an initial value for A. The default value is one.

int The second argument specifies a seed for the core random number
generator. The generator is auto-seeded if this value is zero (the default).

Output

int A random value from a Poisson-distribution.

Examples

=] goPish="=—=—HdH8
r_ 127 |

[lp.pfishie 10. | .

| 11

1:1
R o ||
tH g 127 -
1| [z

Generating random numbers from a Poisson distribution

What's in a name?

The obvious name for this would have been Ip.fishie, but that was already taken.

22 January, 2002 -71-

. . Generate random numbers from
Ip.pfishie m numbers e
a Poisson distribution

Pro Bundles

See Also

Ip.bernie Generate random numbers from a Bernoulli distribution
Ip.expo Generate random numbers from an exponential distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-72 - 22 January, 2002

“Blace” (1/f%) noise

Ip.phhh~

Pro Bundles

Black noise is fractal noise that is even “darker” than Brownian nosie. It is characterized
by a falloff of about 18 dB per octave.

Input

signal

int

Arguments

int

Output

signal

Signal processing provided for the benefit of begin~ /selector~

configurations.

NN factor: specifies the number of low-order bits to clear before converting

the integer representation to the floating-point value used in signal

connections. The NN factor for the Ip.phhh~ object may be in the range 0 <

nn < 31.

Optional value to set the initial NN factor. This is zero (no masking) by

default.

Black noise

What's in a name?

Onomatopoeia.

See Also

Ip.frrr~
Ip.grrr~
Ip.li~
Ip.pfff~
Ip.phhh~
Ip.ppp~
Ip.shhh~
Ip.sss~
Ip.zzz~
noise~
pink~

Low-frequency noise

“Gray” noise

Parametric linear congruence “noise”
“Brownian” (1/f?) noise

“Black” (1/f’) noise

Popcorn (dust) noise

White noise

“Pink” noise (Voss/Gardner algorithm)
Pink noise (McCartney algorithm)
Another source of noise

Another source of pink noise

22 January, 2002

-73 -

Popcorn (dust) noise
lp.ppp~

Pro Bundles

This noise generator, known variously as popcorn or dust noise, generates exponentially
distributed pulses of varying amplitude and pulse width. It resembles kinds of noise
frequently found in telecommunications lines and sometimes in radio broadcast.
Curiously, in most naturally occurring circumstances, the pulses are all of the same sign,

either positive or negative. The Ip.ppp~ object supports both, as well as a symmetrical
variant in which positive and negative pulses are mixed at random.

When the density of pops becomes high and pulse width also increases, it becomes
possible for pops to overlap. The current implementation makes no provision for
overlapping pops; one pop must be completed (i.e., the signal must return to 0) before

the next one can begin. Thus, the actual frequency of pops may fall slightly underneath
the specified mean.

Input

signal Signal processing provided for the benefit of begin~ /selector~
configurations.

float In the left inlet: Set the mean density of impulses. This is specified in Hz.
int In the right inlet: Set the width of impulses in samples. This must be a
non-negative value that specifies the length of the upward and downward

ramps.

sym These messages set the symmetry option. The message pos causes only

Pos positive impulses to be generated, the neg message causes only negative

Neég impulses to be generated, and the sym message causes both positive and
negative impulses to be chosen at random.

Arguments

You can initialize an Ip.ppp~ object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third. The arguments, in order, are:

float Specify the initial mean density of impulses in Hz. The default value is 10.

int Specify the initial ramp width of impulses. The default value is one
sample.

symbol Any of the symbols sym, pos, or neg, will specify the initial value of the
symmetry option. The default value is pos.

Output

signal Popcorn noise

-74 - 22 January, 2002

Popcorn (dust) noise

lp-ppp~

Pro Bundles

Examples
[Fpp~ 101 sym]
|_5|t'='_F-| |5f”|:|.1 |

rrrr

Generating popcorn noise

What's in a name?

P-P-Popcorn,

yummy good popcorn,

You're the b-b-b-best noise any guy could have!

When the d-dust cracks

On the ph-phone line,

I'll be sampling to an ei-ei-ei-eightbit .WAV!
Sung to the tune of “K-K-Katie”

See Also

Ip.frrr~ Low-frequency noise

Ip.grrr~ “Gray” noise

Ip.lli~ Parametric linear congruence “noise”
Ip.pfff~ “Brownian” (1/f?) noise

Ip.shhh~ White noise

Ip.sss~ “Pink” noise (Voss/Gardner algorithm)
Ip.zzz~ Pink noise (McCartney algorithm)
noise~ Another source of noise

pink~ Another source of pink noise

22 January, 2002 -75-

| .scam pf Scale, offset, and limit floating

All Bundles point values

The Ip.scampf object wraps * and + into one convenient object with range-correction
and splitting capabilities.

The core duty of Ip.scampf is to multiply incoming values by a scaling factor and then
to add an offset. In the following discussion this is referred to as mapping. Additionally,
values may be constrained to a given range. Optionally, out-of-range values may be
routed to a second outlet. If you prefer, you may specify that an arbitrary message be
sent out the right outlet whenever mapped values exceed the specified range.

Input

float In the first (left) inlet: the number is mapped by the current scale and offset
int values. The resulting value may be constrained to a given range (see

below) and will be sent out one of the outlets. If no range correction or
splitting option is in effect the value will be sent out the left outlet. Also, as
long as the calculated output value is within the current range, the value
will be sent out the left outlet. If range correction is in effect and the
calculated value is outside the current range, and splitting is on, then the
calculated value (or, optionally, another message) is sent out the right
outlet.

In the second inlet: set the scale parameter.

In the third inlet: set the offset parameter.

In the fourth inlet: set the range lower bound.

In the fifth inlet: set the range upper bound.

Setting the lower bound to a value greater than or equal to the upper
bound generates an invalid range. In this case, mapped values cannot be
corrected and all input values will be treated as out-of-range by the

splitting option.

bang The result of the last input value is recalculated to reflect current scale,
offset, and range settings. This result is sent out the appropriate outlet.

set The symbol set followed by a number sets the input value without
producing any output.

-76 - 22 January, 2002

Scale, offset, and limit floating |p_sca_m f

point values

All Bundles

split

clip
wrap
reflect
stet

The symbol split followed by an integer parameter sets the splitting
option. If the integer is zero, no splitting takes place and all values are sent
out the left outlet. If the integer is one, any value that, after scaling and
offset, is outside the current range will be routed to the right outlet. Note
that this does not change the range correction setting: any current clipping,
wrapping, or reflection calculations will be performed before the final
calculated value is sent out the right outlet.

Any other integer parameter will be interpreted as split 1, but making use
of this feature is deprecated and may not be compatible with future
versions of the Ip.scampf object.

The symbol split followed by a symbol or float parameter will cause the
parameter to be sent out the right outlet when the scaled and offset value is
out of range. A typical idiom would be the message split bang to cause
Ip.scampf to send a bang out the right outlet instead of the corrected value.

Set the current range correction option.

The symbol clip causes mapped values to be clipped to the current range.
Similarly, the symbols wrap and reflect cause the mapped value to be
wrapped or reflected (respectively) into range before output.

The symbol stet turns off range correction. The range bounds are not
effected; this is useful if you want to turn off range correction while leaving
the splitting option in effect.

None of these symbols effects the splitting option.

All of these symbols may be followed by up to two optional numeric
parameters to set the range.

If no parameters are included with the range correction message, then the
current range remains in effect.

If one value is specified, it defines a range with zero as one of the
endpoints. If the parameter is positive, the value is taken as the upper
bound and the lower bound is set to zero. If the parameter is negative, it is
taken as the lower bound and the upper bound is set to zero. If the
parameter is zero, range correction is turned off.

If two values are specified in the message, they define the range. The
smaller of the two values is taken as the lower bound and the larger is
taken as the upper bound.

Invalid range settings (that is, setting the lower bound to a value greater
than or equal to the upper bound) are ignored, so don’t do that.

22 January, 2002 -77 -

Ip.scampf

All Bundles

Scale, offset, and limit floating
point values

Arguments

You can initialize an Ip.scampf object with up to six optional arguments: four integer or
floating-point arguments and two symbol arguments. The symbol arguments may be in
any order and may be arbitrarily interspersed among the numeric arguments (or left
out altogether —they are optional). The numeric arguments must, however, be in the
order given below. Also, you must specify the first numeric argument if you want to
specify the second, and so on for the subsequent numeric arguments.

int
float

symbol

Output

float

symbol

-78 -

The first numeric argument specifies an initial value for the scaling factor.
The default value is 0.0078125 (this is 1/128, chosen because it neatly maps
MIDI input into the range 0 < x < 1).

The second numeric argument specifies an initial value for the offset. The
default value is zero.

The third and fourth numeric arguments specify initial values for the
range bounds. If no values are specified, the range is set to 0 < x <1 (but
this will be without consequence unless range-correction or splitting are
turned on). If only the third numeric value is specified and it is positive, it
will be taken as the range upper bound; if it is negative it will be taken as
the range lower bound; in either case zero will be taken, by default, for
the other range bound. If both of the final numeric arguments are
specified, the smaller value will be taken as lower bound and the larger
value as upper bound. If you explicitly specify two equal values, they will
be ignored entirely and the default range will be used.

You can initialize the range-correction option with one of the symbols clip,
wrap, reflect, or stet. If none of these symbols is listed, no range-correction
will take place initially (that is, stet is the default option).

If you include the symbol split in the argument list, this is initializes the
splitting option to split 1.

Out the left outlet: the mapped input value. If range-correction is on but
splitting is off, out-of-range values will be corrected back into range.

Out the right outlet: If the splitting option is set to one, out-of-range values
will be sent out the right outlet (possibly after range correction).

If the split symbol option is in effect, a symbol will be sent out the right
outlet whenever a mapped value is outside the current range.

22 January, 2002

Scale, offset, and limit floating
point values

|p.scampf

All Bundles

Examples

1] 2]

[lp.scampf 2. 1. split O 4 |

= Input * 2 + 1 Values outside the
specified range [0 .. 4]
come here.

Values are scaled and offset; out-of-range results are sent to the right outlet

What's in a name?

Portmanteau word from scale and map, with a few letters getting displaced in the
process. The final ‘f" indicates floating point.

See Also

* Multiply two numbers, output the result

+ Add two numbers, output the result

clip Limit numbers to a specified range

Ip.scampi Scale, offset, and limit numbers; output integers
Ip.scamp~ Scale, offset, and limit signals

split Look for a range of numbers

22 January, 2002 79 .

I _scampi Scale, offset, and limit integer

All Bundles values

This is your one-stop source for scaling, offsetting, and limiting integer values to a
different output range. The Ip.scampi object wraps * and + into one convenient object
with range-correction and splitting capabilities. Since |p.scampi may also be used for
calculating integer values from floating-point input, it also provides facilities for
rounding.

The core duty of Ip.scampi is to multiply incoming values by a scaling factor and then
to add an offset. In the following discussion this is referred to as mapping. Additionally,
values may be constrained to a given range. Optionally, out-of-range values may be
routed to a second outlet. If you prefer, you may specify that an arbitrary message be
sent out the right outlet when mapped values exceed the specified range. Finally, you
can specify how floating-point results are to be converted to integers. The options cover:
conventional rounding, floor, ceiling, truncation (i.e., “to zero”), and “to infinity.”

Input

int In the first (left) inlet: the number is mapped by the current scale and offset
float values. If necessary, the resulting value is converted to an integer,

following the current rounding settings. This result may be constrained to
a given range (see below) and will be sent out one of the outlets. If no
range correction or splitting option is in effect the value will be sent out the
left outlet. Also, as long as the calculated output value is within the current
range, the value will be sent out the left outlet. If range correction is in
effect and the calculated value is outside the current range, and splitting is
on, then the calculated value (or, optionally, another message) is sent out
the right outlet.

In the second inlet: set the scale parameter.
In the third inlet: set the offset parameter.

In the fourth inlet: set the range lower bound. Note that the range lower
bound is stored as an integer; incoming floats are rounded to integers by
Ip.scampi following the current rounding option.

In the fifth inlet: set the range upper bound. Note that the range lower
bound is stored as an integer; incoming floats are rounded to integers by
Ip.scampi following the current rounding option.

Setting the lower bound to a value greater than or equal to the upper
bound generates an invalid range. In this case, mapped values cannot be
corrected and all input values will be treated as out-of-range by the
splitting option.

bang The result of the last input value is recalculated to reflect current scale,
offset, and range settings. This result is sent out the appropriate outlet.

set The symbol set followed by a number sets the input value without
producing any output.

-80 - 22 January, 2002

Scale, offset, and limit integer
values

Ip.scampi

All Bundles

round These messages set the rounding method used in converting non-integral
floor floating-point values to integers. This conversion takes place immediately
ceiling after the mapping calculation, before splitting and range-correction.
toinf
tozero The round message sets conversion to conventional rounding (i.e., if the
trunc fractional portion of a non-integral floating-point value is greater than or
equal to 1/2, the value is rounded up to the next integer, otherwise the
value is rounded down to the next lowest integer).

The floor message causes all non-integral floating point values to be
rounded downwards to the next integer.

The ceiling message causes all non-integral floating-point values to be
round upwards to the next integer.

The toinf message causes positive non-integral floating-point values to be
rounded upwards and negative values to be rounded downwards.

The tozero message causes positive non-integral floating-point values to be
rounded downwards and negative values to be rounded upwards. This
behavior is often referred to as truncation and is the way float-to-integer
conversion is normally handled in Max.

The message trunc is a synonym for tozero.

split ~ The symbol split followed by an integer parameter sets the splitting
option. If the integer is zero, no splitting takes place and all values are sent
out the left outlet. If the integer is one, any value that, after scaling and
offset, is outside the current range will be routed to the right outlet. Note
that this does not change the range correction setting: any current clipping,
wrapping, or reflection calculations will be performed before the final
calculated value is sent out the right outlet.

Any other integer parameter will be interpreted as split 1, but making use
of this feature is deprecated and may not be compatible with future
versions of the Ip.scampi object.

The symbol split followed by a symbol or float parameter will cause the
parameter to be sent out the right outlet when the scaled and offset value is
out of range. A typical idiom would be the message split bang to cause
Ip.scampi to send a bang out the right outlet instead of the corrected value.

22 January, 2002 -81-

I _scampi Scale, offset, and limit integer

All Bundles values

clip Set the current range correction option.
wrap
reflect The symbol clip causes mapped values to be clipped to the current range.
stet Similarly, the symbols wrap and reflect cause the mapped value to be
wrapped or reflected (respectively) into range before output.

The symbol stet turns off range correction. The range bounds are not
effected; this is useful if you want to turn off range correction while leaving
the splitting option in effect.

None of these symbols effects the splitting option.

All of these symbols may be followed by up to two optional integer
parameters to set the range.

If no parameters are included with the range correction message, then the
current range remains in effect.

If one integer is specified, it defines a range with zero as one of the
endpoints. If the parameter is positive, the value is taken as the upper
bound and the lower bound is set to zero. If the parameter is negative, it is
taken as the lower bound minimum and the upper bound is set to zero. If
the parameter is zero, range correction is turned off.

If two integers are specified in the message, the smaller of the two values is
taken as the lower bound and the larger is taken as the upper bound.

Invalid range settings (that is, setting the lower bound to a value greater
than or equal to the upper bound) are ignored.

Arguments

You can initialize an Ip.scampi object with up to seven optional arguments: four integer
or floating-point arguments and three symbol arguments. The symbol arguments may
be in any order and may be arbitrarily interspersed among the numeric arguments (or
left out altogether —they are optional). The numeric arguments must, however, be in the
order given below. Also, you must specify the first numeric argument if you want to
specify the second, and so on for the subsequent numeric arguments.

-82- 22 January, 2002

Scale, offset, and limit integer |p_scampi

values

All Bundles

int
float

symbol

Output

int

symbol

The first numeric argument specifies an initial value for the scaling factor.
The default value is 128 (chosen because it, together with other default
settings, conveniently maps the output of many Litter Power objects into
the MIDI-friendly range 0 < x < 127).

The second numeric argument specifies an initial value for the offset. The
default value is zero.

The third and fourth numeric arguments specify initial values for the
range bounds. If no values are specified, the range is set to 0 < x <127 (but
this will be without consequence unless range-correction or splitting are
turned on). If only the third numeric value is specified and it is positive, it
will be taken as the range upper bound; if it is negative it will be taken as
the range lower bound; in either case zero will be taken, by default, for
the other range bound. If both of the final numeric arguments are
specified, the smaller value will be taken as lower bound and the larger
value as upper bound. If you explicitly specify two equal values, they will
be ignored entirely and the default range will be used.

Range bounds are stored by Ip.scampi as integers. If you specify any of
these values as a floating point number, they will be rounded to integer
by Ip.scampi following the initial rounding option

You can initialize the float-to-integer conversion method with one of the
symbols round, floor, ceiling, toinf, or tozero. If none of these symbols is
included in the argument list, all floating-point values will be rounded
towards zero (i.e., truncated).

You can initialize the range-correction option with one of the symbols clip,
wrap, reflect, or stet. If none of these symbols is listed, no range-correction
will take place initially (that is, stet is the default option).

If you include the symbol split in the argument list, this initializes the
splitting option to split 1.

Out the left outlet: the mapped input value. If range-correction is on but
splitting is off, out-of-range values will be corrected back into range.

Out the right outlet: If the splitting option is set to one, out-of-range values
will be sent out the right outlet (possibly after range correction). If the split
symbol option is in effect, a symbol will be sent out the right outlet
instead.

If the split symbol option is in effect, a symbol will be sent out the right
outlet whenever a mapped value is outside the current range.

22 January, 2002 -83-

I _scampi Scale, offset, and limit integer

All Bundles values

Examples

Mg zcampi 128 0 =plit 0 127 |

E3E [2565

= Input * 128 Malues outside the
specified range [0 .. 127]
come here.

Values are scaled and (optionally) offset
Out-of-range results are sent out the right outlet

What's in a name?

Portmanteau word from scale and map, with a few letters getting displaced in the
process. The final ‘i’ indicates integer.

*

Multiply two values, output the result

+ Add two values, output the result

clip Limit numbers to a specified range
Ip.scampf Scale, offset, and limit floating-point values
Ip.scamp~ Scale, offset, and limit signals

split Look for a range of numbers

-84 - 22 January, 2002

Scale, offset, and limit signals |p_scam _—

Pro Bundles

This is your one-stop source for scaling, offsetting, and limiting signals to a different
output range. The Ip.scamp~ object wraps *~ and +~ into one convenient object with
range-correction and splitting capabilities.

The core duty of Ip.scampf is to multiply incoming values by a scaling factor and then
to add an offset. In the following discussion this is referred to as mapping. Additionally,

values may be constrained to a given range. You can poll an Ip.scamp~ object to find
out how many samples were out of range.

Input
signal In the first (left) inlet: samples are mapped by the current scale and offset
values. The resulting samples may be constrained to a given range (see

below). After any range correction the final result is sent out the left outlet.

In the second inlet: set the scale parameter, overriding any floating-point
parameter value.

In the third inlet: set the offset parameter, overriding any floating-point
parameter value.

In the fourth inlet: set the range lower bound, overriding any floating-
point parameter value.

In the fifth inlet: set the range upper bound, overriding any floating-point
parameter value.

If a signal sets the lower bound to a value greater than or equal to the
upper bound, the range bounds are reversed.

float In the second inlet: set the scale parameter.
In the third inlet: set the offset parameter.
In the fourth inlet: set the range lower bound.
In the fifth inlet: set the range upper bound.

Setting the lower bound to a value greater than or equal to the upper
bound reverses the range bounds.

bang Sends the current count of how many samples were out of range out the
right outlet. As a side effect, the count is reset to zero.

22 January, 2002 -85 -

I .SCam p ~ Scale, offset, and limit signals

Pro Bundles

clip
wrap
reflect
stet

Arguments

Set the current range correction option.

The symbol clip causes mapped values to be clipped to the current range.
Similarly, the symbols wrap and reflect cause the mapped value to be
wrapped or reflected (respectively) into range before output.

The symbol stet turns off range correction. The range bounds are not
effected.

All of these symbols may be followed by up to two optional numeric
parameters to set the range.

If no parameters are included with the range correction message, then the
current range remains in effect. You may also find this form of the range
correction messages most convenient when signals are connected to any of
the range bounds inlets.

If one value is specified, it defines a range with zero as one of the
endpoints. If the parameter is positive, the value is taken as the upper
bound and the lower bound is set to zero. If the parameter is negative, it is
taken as the lower bound and the upper bound is set to zero. If the
parameter is zero, range correction is turned off.

If two values are specified in the message, they define the range. The
smaller of the two values is taken as the lower bound and the larger is
taken as the upper bound.

Invalid range settings (that is, setting the lower bound to a value greater
than or equal to the upper bound) are ignored.

You can initialize an Ip.scamp~ object with up to five optional arguments: four integer
or floating-point arguments and one symbol argument. The symbol argument, if used,
may be included anywhere among the numeric arguments. The numeric arguments
must, however, be in the order given below. Also, you must specify the first numeric
argument if you want to specify the second, and so on for the subsequent numeric

arguments.
int
float
- 86 -

The first numeric argument specifies an initial value for the scaling factor.
The default value is 0.5488116361 (this is equivalent to a gain of -6dB).

The second numeric argument specifies an initial value for the offset. The
default value is zero.

The third and fourth numeric arguments specify initial values for the
range bounds. If no values are specified, the range is set to -1 < x < 1. If
only the third numeric value is specified Ip.scamp~ will assume that you
want a symmetrical range with the specified value and its negative as the
range bounds. If both of the final numeric arguments are specified, the
smaller value will be taken as lower bound and the larger value as upper
bound. You can specify two equal values to generate a constant signal, but
there are less processor-intensive ways of doing this.

22 January, 2002

Scale, offset, and limit signals

Ip.scamp~

Pro Bundles

symbol You can initialize the range-correction option with one of the symbols clip,
wrap, reflect, or stet. If none of these symbols is listed, no range-correction
will take place initially (that is, stet is the default option).

Output

signal Out the left outlet: the mapped input value. If range-correction is on but
splitting is off, out-of-range values will be corrected back into range.

int ~ Out the right outlet: a count of the number of out-of-range samples since
the last time a count was sent out.

What's in a name?

Portmanteau word from scale and map, with a few letters getting displaced in the
process. The final ‘~’ is in honor of Miller Puckette (or maybe the Milwaukee airport),
but you knew that anyway.

See Also

¥~ Multiply two signals

+~ Add signals

clip~ Limit signal amplitude

Ip.scampf Scale, offset, and limit numbers; output floating-point values
Ip.scampi Scale, offset, and limit numbers; output integers

Ip.grl~ Phase unwrapping

pong~ Variable range signal folding

22 January, 2002 -87-

Ip.shhh Generate random numbers from

All Bundles a “white” distribution

This is a control-domain version of the Ip.shhh~ signal generator. It generates values in
the range 0 < x < 1.

Input
bang Generate a random value with “white” (i.e., uniform) distribution.
int In the right inlet: sets the NN factor, specifying the number of low-order
bits to clear before converting the integer representation to floating-point.
The NN factor may be in the range 0 < nn < 31.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments
int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).
Output
float A random value in the range 0 < x < 1.
Examples
'__ 127
Scale output to T
OLx <128 1
+ -+
1:1
a
TS 127 =
1] b |z
Generating random numbers
What's in a name?
See Ip.shhh~.
See Also
Ip.grrr “Gray” noise (control domain)
Ip.pfff Generate random numbers from a 1/f* (“Brownian”) distribution
Ip.shhh~ White noise
Ip.sss Generate random numbers from a 1/f (“pink”) distribution
Ip.zzz Generate random numbers from a 1/f (“pink”) distribution
Ip.scampi Scale, offset, and limit numbers; output integers
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-88- 22 January, 2002

White noise IpShhh~

All Bundles

This is the “whitest” white noise available for Max/MSP, taking about 2.2 - 10" years to
repeat its cycle. That's an order of magnitude longer than the estimated age of the
universe since the Big Bang.

Based on the Ip.tata random number generator, it should also use a little less processing
power than other white noise implementations.

Input

signal Signal processing provided for the benefit of begin~ /selector~
configurations.

int NN factor, a value in the range 0 < nn <31, specifying the number of low-

order bits of the randomly generated integers to set to zero before
converting to a signal.

Arguments

int ~ Optional initial value for the NN factor. Zero by default.

Output

signal Noise.

Examples

Scale output
arnplitude to
taste.

|5tartwind-:-w |

Generating white noise

What's in a name?

Onomatopoeia.

See Also

Ip.frrr~ Low-frequency noise

Ip.grrr~ “Gray” noise

Ip.lll~ Parametric linear congruence “noise”
Ip.pfff~ “Brownian” (1/f?) noise

Ip.phhh~ “Black” (1/f’) noise

Ip.ppp~ Popcorn (dust) noise

22 January, 2002 -89 -

Ip.shhh~ White noise

Ip.sss~ “Pink” noise (Voss/Gardner algorithm)
Ip.zzz~ Pink noise (McCartney algorithm)
noise~ Another source of noise

pink~ Another source of pink noise

Hawking, Stephen W., A Brief History of Time. (London/New York: Bantam 1988)

-90 - 22 January, 2002

Generate random numbers from I SSS
a 1/f (“pink") distribution "
(Voss/Gardner algorithm)

All Bundles

This is a control-domain version of the Ip.sss~ signal generator. It generates values in
the range 0 < x < 1. It uses the Voss/Gardner algorithm, first published in Martin
Gardner’s “Mathematical Games” section of Scientific American (cf. the Bibliography).

Input
bang Generate a random value with 1/f distribution.
int In the right inlet: sets the NN factor, specifying the number of low-order
bits to clear before converting the integer representation to floating-point.
The NN factor may be in the range 0 < nn < 31.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments
int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default if nothing is
specified).
Output
float A random value in the range 0 < x < 1.
Examples

Uzi 256

[counter O EE [Ip.5=s |

|I|:-.5n:am|:ui | Cutput =caled to the

tange [0..127] for
dizplay in the table

|t-5|:'|'5' | window .

D ————————lIInNi[ldiVV———— E

il

i 127 [

. . R \ .._h'. " - y

—
11

u] -

T4 u] 233 -

1| [%

Generating random numbers with 1/f distribution

22 January, 2002 -91-

I SSS Generate random numbers from
) a 1/f (“pink") distribution
(Voss/Gardner algorithm)

All Bundles

What's in a name?

See Ip. shhh~.

See Also

Ip.grrr “Gray” noise (control domain)

Ip.pfff Generate random numbers from a 1/f* (“Brownian”) distribution
Ip.shhh Generate random numbers from a “white” distribution

Ip.sss~ “Pink” noise (Voss/Gardner algorithm)

Ip.zzz Generate random numbers from a 1/f (“pink”) distribution
Ip.scampi Scale, offset, and limit numbers; output integers

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

Gardner, Martin, “Mathematical Games: White and Brown Music, Fractal Curves, and
One-over-f Fluctuations,” Scientific American 1978, 16-31.

-92- 22 January, 2002

“Pink" noise I

(Voss/Gardner algorithm) P-SSS~

All Bundles

Pink noise generated based on the original Voss/Gardner algorithm for generating 1/f
distributed random numbers.

Input

signal Signal processing provided for the benefit of begin~ /selector~
configurations.

int NN factor: specifies the number of low-order bits to clear before converting

the integer representation to the floating-point value used in signal

connections. The NN factor for the Ip.sss~ object may be in the range 0 <
nn < 31.

Arguments

int Optional value to set the initial NN factor. This is zero (no masking) by
default

Output

signal Pink noise.

Examples

m Seale output
arnplitude to

tazte.
T = "'\rlnl vr J W

Generating pink noise

What's in a name?

Onomatopoeia.

See Also

Ip.frrr~ Low-frequency noise

Ip.grrr~ “Gray” noise

Ip.lli~ Parametric linear congruence “noise”
Ip.pfff~ “Brownian” (1/f*) noise

Ip.phhh~ “Black” (1/f’) noise

Ip.ppp~ Popcorn (dust) noise

Ip.shhh~ White noise

Ip.zzz~ “Pink” noise (McCartney algorithm)
pink~ Another source of pink noise (algorithm not known)

22 January, 2002 -93 -

I p . Stacey Collect statistics

All Bundles

Count the input values, track cumulative minimum and maximum, and calculate mean,
standard deviation, skew, and kurtosis.

Input

float Any numeric value is added to the cumulative statistics. The resulting
int statistics are output through the outlets.

bang Send the current value of all statistics out the outlets.
clear Remove all statistical data stored in the object. In keeping with the
standard behavior of the clear message in other Max objects, no data are

sent out the outlets in response to this message.

clearbang Remove all statistical data stored in the object and send zeros through all
the outlets. This behavior is often desired, hence the merging of clear and
bang into a single message.

Arguments

None.

Output

int Out the first (leftmost) outlet: statistical count of the number of values that
are being statistically evaluated.

float Out the second outlet: minimum value received.
Out the third outlet: maximum value received.Out the fourth outlet: mean.
Out the fifth outlet: sample standard deviation
Out the sixth outlet: skew

Out the seventh outlet: kurtosis.

Examples

m Fandorn values from same source

[Ip.stacey |

T T T T T T T

[2791 | [o2ve7 | (06592 | [04799z] [ooene]| [-0azo0] [-0.2148]
Count Min Max Mean Standard Skew kurtosis

deviation
Collecting statistics

What's in a name?

The convention in the Litter Package of abbreviating the function to a nickname would
have given us statsie. I thought stacey sounded better.

-9 - 22 January, 2002

Collect statistics | Stace

All Bundles
See Also
Histo Make a histogram of numbers received
table Store and graphically edit an array of numbers

Behnen, Konrad and Georg Neuhaus, Grundkurs Stochastik, Teubner Studienbticher
Mathematik (Stuttgart: Teubner, 1984).

Salkind, Neil J., Statistics for People Who (Think They) Hate Statistics. (Thousand Oaks,
California: Sage, 2000)

...and the entire rest of the Litter Package

22 January, 2002 -95 -

Ip.stu

Pro Bundles

Generate random numbers from
Student's t distribution

The t distribution has one parameter, referred to as degrees of freedom. It produces an
asymmetrical distribution of positive deviates. The degrees of freedom parameter is a
positive integer.

The t distribution was developed by the statistician William Gosset. At the time of
publication Gosset was employed by the Guinness brewery, which did not allow
employees to publish, so Gosset wrote under the pseudonym of Student. The rest is

history.
Input
bang Generate a random value from a t distribution.
int In the right inlet: set the degrees of freedom
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments
int The Ip.stu object can be initialized with two optional arguments. You must
specify the first argument if you want to specify the second.
The first argument sets an initial value for the degrees of freedom
parameter. The default is one.
The second argument sets the value for the seed of the core random
number generator. The generator is auto-seeded if this value is zero (the
default).
Output
float A random number from a t distribution.
Examples

Ip.scampi 2
Llp P

table stew

D stew "= E
&4 | Map lp.stu's output .
to a range usable by 1:1
Histo and table. TT

: e 0 -

T4 g 127 -

4] bz

Generating random numbers with Student’s t distribution.

What's in a name?

This is one of the few names inherited from the original Litter package.

-96 -

22 January, 2002

Generate random numbers from

Student's t distribution Ip.stu

Pro Bundles
See Also
Ip.norm Generate random numbers from a normal (“Gaussian”) distribution
Ip.chichi Generate random numbers from a chi-square distribution
Ip.fishie Generate random numbers from a Fisher distribution
Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 97

I tata Generate random numbers using
) the Tausworthe 88 algorithm

All Bundles

The Ip.tata object implements the Tausworthe 88 random number generator. This is
currently the fastest algorithm that passes all standard statistical tests for randomness. It
has a cycle of approximately 2% (that’s about 3 - 10%) and generates random values
across the entire range of 32-bit numbers (i.e., -2,147,483,648 < x <2,147,483,647).

The Ip.tata object allows you to scale the output to a given range.

Input
bang Generate a random number and send it out the outlet.
int In the middle inlet: set minimum value (inclusive) to generate.
In the right inlet: set the maximum value (inclusive) to generate.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments

You can initialize an Ip.tata object with up to three optional arguments. You must
specify the first argument if you want to specify the second and you must specify the
second to specify the third.

int The first two arguments specify the range. If you specify only one
argument, the range will run from zero to the value specified. If this is a
negative value, the value is taken as the minimum and zero as the
maximum. If the argument is a positive value, it is the maximum and zero
is taken as the minimum. If you specify both of the first two arguments,
the first is taken as minimum and the second as maximum. If you specify a
minimum larger or equal to the maximum, no scaling will take place. This
is the default situation.

A third argument, if specified, seeds the random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

int A random number.

-98 - 22 January, 2002

Generate random numbers
using the Tausworthe 88 I -tata

H All Bundles
algorithm
Examples
The low bits are
where most random
nurnber generators
are least “randorm ¥
|ta|:-|e tata | |ta|:-|e lili |
O T aneeSSeee————
T~ .
1:1 1:1
kel e e + +
1:1 1:1
L o
5 127 7 e 127 -
! [[z 1] vz

As a replacement for random

What's in a name?

All basic random number generators are named based on a repeated short syllable
drawn from the name commonly found in the statistical literature. The habit started
with the TT800 algorithm (the first one implemented). It seemed like a nice idea at the
time.

See Also

Ip.lili Parametric linear congurence method

Ip.titi Generate random numbers using the TT800 algorithm

random Hard-wired linear congrunce pseudo-random number generator

L’Ecuyer, Pierre, “Maximally Equidistributed Combined Tausworthe Generators,”
Mathematics of Computation 65 (1996): 203-213.

22 January, 2002 -99_

. Time-domain interval mutation
Ip.tim~

All Bundles

The Time-domain Interval Mutator is an implementation of Larry Polansky’s
“Morphological Mutations” designed for mutating audio signals in the time domain.

Input

signal In1st Inlet, the mutation source (mandatory if you want anything to
happen).

In 2nd Inlet, the mutation target (mandatory if you want anything to
happen)

In 3rd Inlet, a time-varying Mutation Index (defaults to float input or object
argument if there is no signal). Mutation Index is limited to the range 0 <
Q<1

In 4th Inlet, a time-varying Delta Emphasis value. This defaults to float
input or object argument if there is no signal. It is ignored if the object is
using absolute intervals. Delta Emphasis is limited to the range -1 <5 <1.

In 5th Inlet, a time-varying Clumping Factor (defaults to float input or
object argument if no signal; ignored if the object is performing a uniform
mutation). Clumping Factor is limited to 0 < © < 1. The meaning of a
Clumping Factor when & = 1 is indeterminate when the length of a
mutation is unknown. For practical purposes in this implementation, the
maximal value is clipped to 0.9990234375, which means that you can
expect an irregular mutation with a mutation index of 0.5 to change state
between mutated and non-mutated forms about once every thousand
samples or so.)

float In 3rd inlet: sets the Mutation Index. This is overridden if a signal is
present.

In 4th inlet: sets the Delta Emphasis. This is overridden if a signal is
present and ignored if the object is using absolute intervals.

In 5th Inlet, sets the Clumping Factor. This is overridden if a signal is
present and ignored if the object is performing a uniform mutation.

Sending a float to either of the first two inlets elicits an error message in the
Max window.

usim Set the Mutation algorithm to Linear Contour Modulation, Uniform Signed
isim Interval Modulation, etc.

uuim

iuim

wem
lcm

rel Use relative intervals for calculating the mutant. This is the default setting.

You can include a float with this message to set Delta Emphasis. The
default value is zero

-100 - 22 January, 2002

Time-domain interval mutation lb.tim~

All Bundles

abs

clear

Arguments

symbol

float

Output
signal

Examples

Use Absolute Intervals for calculating the mutant.

Note that, unlike interval mutation in SoundHack and other
implementations, the Ip.tim~ object does not support source and target
reference values. If you want to source or target intervals to be calculated
against a reference other than zero, you need to send the signals through
+~, *~, or other objects to suit your needs. This gives you greater
flexibility and control than anything Ip.tim~ could offer.

Resets the stored values of previous source, previous target, and previous
mutant to 0.0. This is often helpful after a mutation has gotten chaotic.

The symbols usim, isim, uuim, iuim, wem, and Icm can be used to specify
the initial mutation algorithm to use. The default is usim.

Up to three float arguments can be included to specify (in order) Mutation
Index (Q), Delta Emphasis (this is ignored when absolute intervals are
used), and Clumping Factor (this is only used by irregular mutations). All
default to 0.0.

Mutant signal out of the left outlet

Source signal Target =ignal Ornega Clumnping index. [elta Emphasis
[zaecle™ 440 | [zseele™ %Iﬂ (rutation indes:)
 ereensnsees 3 QD.ES | bin.% | bi_m

i Mutant signal sent
; out outlet.

[startwindow |

What's in a

i poa |

il

| l’\ LAY

Mutate two signals to get a surprising result

name?

Time-domain Interval Mutation.

22 January, 2002 -101 -

. Time-domain interval mutation
Ip.tim~

All Bundles

See Also

Ip.frim~ Frequency domain interval mutation
Ip.vim Interval mutation of numeric values

Polansky, Larry, “Morphological Metrics: An Introduction to a Theory of Formal
Distances” (paper presented at the International Computer Music Conference,
Champaign-Urbana, 1987), 197-204.

Polansky, Larry, “Morphological metrics,” Journal of New Music Research (formally
Interface) 25 (1996): 289-368.

-102 - 22 January, 2002

Generate random numbers I tltl
using the TT800 algorithm -

Pro Bundles

The Ip.titi object implements the TT800 random number generator proposed by Makoto
Matsumoto and Yoshiharu Kurita. This algorithm passes all standard statistical tests for
randomness. It has a cycle of 2% - 1 (that's approximately 6 - 10*°) and generates
random values across the entire range of 32-bit numbers (i.e., from -2,147,483,648 to
2,147,483,647).

The Ip.titi object allows you to scale the output to a given range.

Input
bang Generate a random number and send it out the outlet.
int In the middle inlet: set minimum value (inclusive) to generate.
In the right inlet: set the maximum value (inclusive) to generate.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments
int ~ Three optional arguments.

The first two arguments specify the range. If you specify only one
argument, the range will run from zero to the value specified. If this is a
negative value, the value is taken as the minimum and zero as the
maximum; if the argument is a positive value, it is the maximum and zero
is taken as the minimum. If you specify both of the first two arguments,
the first is taken as minimum and the second as maximum. If you specify a
minimum larger or equal to the maximum, no scaling will take place. This
is the default situation.

A third argument, if specified, seeds the random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

int A random number

22 January, 2002 -103 -

I tltl Generate random numbers using
. the TT800 algorithm

Pro Bundles

Examples

Let's examine the
—— top and bottorn 8
bits

Hitozoe| [Histezoe |
|

I I I
[table top | [table bottarn |

top=——=HH bottom=—"FEIB

a3 1

a3 1

233 - 233

[z
High order and low-order bits of numbers generated with Ip.titi are all random.
You can also rely on the other bits to be random.

Sk

D

What's in a name?

See Ip.tata.

See Also

Ip.lili Parametric linear congurence method

Ip.tata Generate random numbers using the Tausworthe 88 algorithm
random Hard-wired linear congrunce pseudo-random number generator

Matsumoto, Makoto and Yoshiharu Kurita, “Twisted GFSR Generators II,” ACM
Transactions on Modelling and Computer Simulation 4, no. 3 (1994): 254-266.

-104 - 22 January, 2002

Interval mutation of numeric | vim

values

Pro Bundles

Value Interval Mutation is an implementation of Larry Polansky’s “Morphological
Mutations” designed for mutating sequences of discrete pairs of source and target
numbers. The numbers may be either integer or floating point.

Input

int
float

set

bang

usim
isim
uuim
iuim
wcm
lcm

rel

abs

In the left inlet: computes a mutant value based on the integer received
(the “source”) and the current “target” (received in the second inlet). The
mutant value is output through the outlet.

In the second inlet: sets the current target value

In 3rd Inlet, sets the Mutation Index (Q).
The mutation index is constrained to the range 0 < Q < 1. Note that the
only valid integer values are zero and one.

In 4th Inlet, sets the Delta Emphasis (8). This value is ignored if the object
is using absolute intervals.

The mutation index is constrained to the range -1 < § < 1. Note that the
only valid integer values are one, zero, and negative one.

In 5th Inlet, sets the Clumping Factor ([]). This value is ignored if the
object is performing a uniform mutation.

The clumping factor is constrained to the range 0 <[] < 1. Note that the
only truly valid integer value is zero. All positive integers are clipped to
the maximum value for []. In this implementation, the maximum value is
set to 0.9990234375, which means you can expect an irregular mutation
with p = 0.5 to change state between mutated and non-mutated forms
about once every thousand events or so.

The symbol set followed by an integer sets the current target value.

Sends the current mutant value through the left outlet and the state of
range-checking through the right outlet.

Set the Mutation algorithm to Linear Contour Modulation, Uniform Signed
Interval Modulation, etc.

Use Relative Intervals for calculating the mutant. This is the default
setting. You can include a float with this message to set Delta Emphasis
(default 0.0).

Use Absolute Intervals for calculating the mutant.

Note that, unlike interval mutation in SoundHack and other
implementations, the Ip.vim object does not support source and target
reference values. If you want to source or target intervals to be calculated
against a reference other than zero, you need to send the signals through
+~, *~, or other objects to suit your needs. This gives you greater
flexibility and control than anything Ip.vim could offer.

22 January, 2002 -105 -

. Interval mutation of numeric
Ip.vim

Pro Bundles va/ues

clear Resets the stored values of previous source, previous target, and previous
mutant to 0. This is often helpful after a mutation has gotten chaotic.

Arguments

symbol The symbols usim, isim, uuim, iuim, wem, and lcm can be used to specify
the initial mutation algorithm to use. The default is usim.

float Up to three float arguments can be included to specify (in order) Mutation
Index (Q), Delta Emphasis (this is ignored when absolute intervals are
used), and Clumping Factor (this is only used by irregular mutations). All
default to 0.0.

Output

float The current mutant value.
Most integer objects will accept a float and convert by truncating any
fractional part. You can use Ip.scampi for rounding and forms of floating-
point to integer conversion.

What's in a name?

Abbreviation for Interval Mutation of numeric Values. The letters got shuffled around,
but that happens with interval mutation a lot.

See Also

Ip.scampi Scale, offset, and limit numbers; output integers
Ip.tim~ Time domain interval mutation

Ip.frim~ Frequency domain interval mutation

Polansky, Larry, “Morphological Metrics: An Introduction to a Theory of Formal
Distances” (paper presented at the International Computer Music Conference,
Champaign-Urbana, 1987), 197-204.

Polansky, Larry, “Morphological metrics,” Journal of New Music Research (formally
Interface) 25 (1996): 289-368.

-106 - 22 January, 2002

Generate random numbers from I
Weibull and Rayleigh distributios p y

Pro Bundles

The Weibull distribution has two parameters, generally referred to as scale and curve.
The Rayleigh distribution is a special case of the Weibull distribution.

The Weibull distribution is widely used in the study of reliability.
Input
bang Generate a random value from a Weibull or Rayleigh distribution.
float In the middle inlet: Set the value of the scale parameter
In the right inlet: Set the value of the curve parameter.

seed The symbol seed followed by an integer reseeds the internal random
number generator.

Arguments

float The first two (optional) arguments specify initial values for the scale and
curve parameters (respectively). Both parameters default to one.

seed Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).

Output

float A random value from a Weibull distribution.

Examples
[why =——HH
.__ 127
Convert output 1o an ~—
integer for Histo and T '
table. ++
1:1 . - o ||
t 127 -
(| [[z

Generating random numbers with a Weibull distribution

What's in a name?
Why not?
See Also

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

22 January, 2002 -107 -

I 277 Generate random numbers from a 1/f
p) (“pink") distribution (McCartney algorithm)

Pro Bundles

This is a control-domain version of the Ip.zzz~ signal generator. It generates values in
the range 0 < x < 1. It is based on a variant of the classic Voss/Gardner algorithm
developed by James McCartney.

Input
bang Generate a random value with “pink” distribution.
seed The symbol seed followed by an integer reseeds the internal random
number generator.
Arguments
int Set the value for the seed of the core random number generator. The
generator is auto-seeded if this value is zero (the default).
Output
float A random value in the range 0 < x < 1.
Examples

pinkie Soaa——r— mj=|

D

127

[zounter O 2%5-1 [lp.zzz |

Lp.zzz' output iz scaled to
the range 0 2 % < 128 for
display in the table window.

a 255

-
S

table pinkie

Generating random numbers with a 1/f (pink) distribution

What's in a name?

See Ip.zzz~

See Also

Ip.grrr “Gray” noise (control domain)

Ip.pfff Generate random numbers from a 1/f* ("Brownian”) distribution
Ip.shhh Generate random numbers from a “white” distribution

Ip.sss Generate random numbers from a 1/f (“pink”) distribution
Ip.zzz~ “Pink” noise (McCartney algorithm)

Ip.scampi Scale, offset, and limit numbers; output integers

Ip.tata Generate random numbers using the Tausworthe 88 algorithm

-108 - 22 January, 2002

“Pink” (1/f)noise I

(McCartney algorithm) P-2Z2Z~

Pro Bundles

Pink noise generated using James McCartney’s improved version of the original
Voss/Gardner algorithm. McCartney’s algorithm is somewhat more efficient and,
perhaps more importantly, distributes processor load more evenly. Also, it is possible to
prove that the algorithm produces the desired power fall-off of 3dB/octave.

Input

signal Signal processing provided for the benefit of begin~ /selector~
configurations.

int NN factor: specifies the number of low-order bits to clear before converting
the integer representation to the floating-point value used in signal

connections. The NN factor for the |p.zzz~ object may be in the range 0 <
nn < 31.

Arguments

int Optional value to set the initial NN factor. This is zero (no masking) by
default

Output

signal Pink noise.

Examples

i

"VN""*-"""I{*"

P,

.“‘A'W"'\'A’“"l .4

Generating Pink noise

What's in a name?

Onomatopoeia

See Also

Ip.frrr~ Low-frequency noise

Ip.grrr~ “Gray” noise

Ip.lll~ Parametric linear congruence “noise”
Ip.pfff~ “Brownian” (1/f?) noise

Ip.phhh~ “Black” (1/f’) noise

22 January, 2002 -109 -

“Pink" noise
|P 222 (McCartney algorithm)

Pro Bundles

Ip-ppp~ Popcorn (dust) noise

Ip.shhh~ White noise

Ip.sss~ “Pink” noise (Voss/Gardner algorithm)

pink~ Another source of pink noise (algorithm not known)

-110 - 22 January, 2002

	What is the Litter Power Package?
	Which Version of Litter Power?
	What’s in Litter Power?
	Instal ling (and Removi ng) Li tter Power
	Using Li tter Power
	Why “Litter”?
	Acknowledgements
	Bibliography
	Thesaurus
	lp.abbie
	lp.bernie
	lp.c2p~
	lp.chichi
	lp.coshy
	lp.dicey
	lp.ernie
	lp.expo
	lp.fishie
	lp.frim~
	lp.frrr~
	lp.gammer
	lp.ginger
	lp.grl~
	lp.grrr
	lp.grrr~
	lp.hyppie
	lp.i
	lp.kg
	lp.lili
	lp.linnie
	lp.lll~
	lp.loggie
	lp.lonnie
	lp.norm
	lp.p2c~
	lp.pfff
	lp.pfff~
	lp.pfishie
	lp.phhh~
	lp.ppp~
	lp.scampf
	lp.scampi
	lp.scamp~
	lp.shhh
	lp.shhh~
	lp.sss
	lp.sss~
	lp.stacey
	lp.stu
	lp.tata
	lp.tim~
	lp.titi
	lp.vim
	lp.y
	lp.zzz
	lp.zzz~

