

Litter
Power

Package

Documentation Addenda

New objects since Litter Power 1.0
Current Litter Power Package version: 1.1.1
Last modified March 17, 2003

Copyright 2002-03 © Peter Castine

17 March, 2003 — 2 —

Litter Power Thesaurus

Thesaurus

1/f distribution .

lp.sss

,

lp.zzz

,

lp.sss~

,

lp.zzz~

Aliasing .

lp.nn~

Amesian feedback .

lp.ernie

Arc sine distribution.

lp.abbie

Bernoulli Trials .

lp.bernie

Beta distribution .

lp.abbie

Bilateral exponential distribution.

lp.expo

Binary Choice .

lp.bernie

Bit resolution reduction

lp.nn~

Black noise .

lp.phhh

,

lp.phhh~

Brown noise .

lp.pfff

,

lp.pfff~

Brownian motion .

lp.pfff

,

lp.pfff~

Cartesion to Polar coordinates

lp.c2p~

Cauchy distribution .

lp.coshy

Chaos .

lp.ccc

,

lp.ccc~

,

lp.lya

,

lp.poppy

,

lp.poppy~

Chi-Square distribution

lp.chichi

Clipping values to range

lp.scampf

,

lp.scampi

,

lp.scamp~

Coin tosses .

lp.bernie

,

lp.ginger

Colored noise .

lp.pfff~

,

lp.phhh~

,

lp.pvvv~

,

lp.shhh~

,

lp.sss~

,

lp.zzz~

Conversion. .

lp.c2p~

,

lp.p2c~

Count of events .

lp.stacey

Dice .

lp.dicey

Dither .

lp.gsss~

,

lp.nn~

,

lp.trrr~

Dust noise .

lp.ppp~

Erlang distribution .

lp.gammer

Exponential distribution

lp.expo

,

lp.y

,

lp.gammer

First Law of Laplace .

lp.expo

Fisher distribution .

lp.fishie

Floating-point interval mutation

lp.vim

Fractal noise. .

lp.pfff

,

lp.pfff~

Frequency-domain interval mutation

lp.frim~

Gamma distribution.

lp.gammer

Gauss distribution .

lp.gsss~

,

lp.norm

Gray noise .

lp.grrr

,

lp.grrr~

Hyperbolic cosine distribution

lp.hyppie

I Ching .

lp.ginger

,

lp.kg

,

lp.i

Interval mutation .

lp.frim~

,

lp.tim~

,

lp.vim

Kurtosis .

lp.stacey

Laplace distribution .

lp.expo

Limiting to range .

lp.scampf

,

lp.scampi

,

lp.scamp~

Linear congruence .

lp.lili

,

lp.lll~

Linear distribution .

lp.linnie

Logistic distribution .

lp.loggie

Log-normal distribution

lp.lonnie

Low frequency noise

lp.frrr~

Lyapunov space .

lp.lya

Map values .

lp.expo

,

lp.hyppie

,

lp.linnie

,

lp.loggie

,

lp.scampf

,

lp.scampi

,

lp.scamp~

,

lp.kg

Maximum. .

lp.stacey

McCartney Pink noise

lp.zzz

,

lp.zzz~

Mean .

lp.stacey

Minimum .

lp.stacey

Morphological mutation

lp.frim~

,

lp.tim~

,

lp.vim

Negative Cauchy distribution

lp.coshy

Litter Power Thesaurus

— 3 — 17 March, 2003

Negative exponential distribution

lp.expo

Noise .

lp.frrr~

,

lp.grrr

,

lp.grrr~

,

lp.gsss~

,

lp.norm

,

lp.pfff,
lp.pfff~, lp.phhh, lp.phhh~, lp.ppp~, lp.shhh,
lp.shhh~, lp.sss, lp.sss~, lp.tata, lp.titi, lp.trrr~, lp.zzz,
lp.zzz~

Normal distribution lp.gsss~, lp.norm
Parametric linear congruence lp.lili, lp.lll~
Phase unwrapping . lp.grl~
Pink Noise . lp.sss, lp.zzz, lp.sss~, lp.zzz~
Poisson distribution lp.pfishie
Polar to Cartesian coordinates. lp.p2c~
Popcorn noise. lp.ppp~
Population growth model lp.poppy, lp.poppy~
Positive Cauchy distribution lp.coshy
Random walk. lp.pfff, lp.pfff~
Range limiting . lp. scampf, lp.scampi, lp.scamp~
Rayleigh distribution lp.y
Red noise . lp.pfff, lp.pfff~
Reflecting values into range lp.scampf, lp.scampi, lp.scamp~
Sample-and-hold noise. lp.frrr~
Sample rate reduction. lp.nn~
Scale values . lp.scampf, lp.scampi
Schuster/Procaccia algorithm lp.ccc, lp.ccc~
Signal degradation . lp.nn~
Skew (statistical) . lp.stacey
Spectral mutation . lp.frim~
Standard deviation . lp.stacey
Statistics . lp.stacey
Student’s "T" distribution. lp.stu
"T" distribution . lp.stu
Tausworthe 88 random number algorithm lp.tata
Time domain mutation lp.tim~
Triangular distribution lp.linnie, lp.trrr~
TT800 random number algorithm lp.titi
Uniform distribution. lp.shhh, lp.shhh~, lp.tata, lp.titi
Urn model . lp.ernie
Variable color noise . lp.pvvv, lp.pvvv~
Voss/Gardner algorithm lp.sss, lp.sss~
Voss/McCartney algorithm lp.zzz, lp.zzz~
Weibull distribution lp.y
White noise. lp.titi, lp.shhh, lp.shhh~
Wrapping values into range lp.scampf, lp.scampi, lp.scampi~

17 March, 2003 — 4 —

lp.ccc
Pro Bundles only

Generate chaotic sequences with 1/f
distribution (Schuster/Proccacia algorithm)

Generate sequences of values in the range 0 < x < 1 using the interative formula

proposed by Schuster and Proccacia as a method for generating a 1/f spectrum.

The sequence has a rather different look from other 1/f generators (such as lp.sss and lp.zzz). The
lp.ccc sequence is characterized by long series of values close to zero with sudden chaotic
outbursts of larger values. The implementation of the Schuster/Proccacia algorithm used here is
guaranteed never to degenerate to an infinite sequence of zeros, although there may be times
when you start to doubt this. Trust me.

Input

Arguments

0utput

Examples

Lp.ccc in action.

bang Generate next value in the sequence and send it out the outlet.

float Set x to the input value, generate the following value in the sequence, and send it
out the outlet. Values of x outside the range 0 < x < 1 will not be used.

float Optional initial value for x (the “seed”). If specified, the value must be in the range
0 < x < 1. If not specified, lp.ccc will generate a seed based on an algorithm so non-
deterministic that your computer would have a nervous breakdown if I revealed
it here.

float The next value from the Schuster/Proccacia sequence.

x' x x2+〈 〉 mod1=

Generate chaotic sequences with 1/f
distribution (Schuster/Proccacia algorithm)

lp.ccc
Pro Bundles only

— 5 — 17 March, 2003

What’s in a name?

Kaspar T. Toeplitz wondered if the name was a clipped form of Cosmic Coincidence Control
Center. In fact, the name is simply in the tradition of the other 1/f generators, lp.sss and lp.zzz. But
it is a cosmic coincidence.

See Also

lp.ccc~ Chaotic noise with 1/f spectrum (Schuster/Procaccia algorithm)
lp.sss Generate random numbers from a 1/f (“pink”) distribution (Voss/Gardner

algorithm)
lp.zzz Generate random numbers from a 1/f (“pink”) distribution (McCartney

algorithm)

Schuster, H.G., Deterministic Chaos: An Introduction. Physik Verlag, Weinheim, 1984.

Procaccia, I. and Schuster, H.G. “Functional renormalisation group theory of universal 1/f noise in
dynamical systems,“ Physics Review 28 A, 1983.

17 March, 2003 — 6 —

lp.ccc~
Pro Bundles only

Chaotic noise with 1/f spectrum (Schuster/
Procaccia algorithm)

Noise with a 1/f spectrum using the Schuster/Procaccia chaotic algorithm

The sequence has a rather different look from other 1/f generators (such as lp.sss~ and lp.zzz~).
Noise from lp.ccc~ is characterized by long periods of values close to zero with sudden chaotic
outbursts of noise. The implementation of the Schuster/Proccacia algorithm used here is
guaranteed never to degenerate to a zero signal, although there may be times when you wonder.
Patience.

Input

None.

Arguments

None.

0utput

Examples

Lp.ccc~ in action.

What’s in a name?

See lp.ccc.

See Also

lp.ccc Generate chaotic sequences with 1/f distribution (Schuster/Proccacia algorithm)
lp.sss~ Generate random numbers from a 1/f (“pink”) distribution (Voss/Gardner

algorithm)
lp.zzz~ Generate random numbers from a 1/f (“pink”) distribution (McCartney

algorithm)

Schuster, H.G., Deterministic Chaos: An Introduction. Physik Verlag, Weinheim, 1984.

Procaccia, I. and Schuster, H.G. “Functional renormalisation group theory of universal 1/f noise in
dynamical systems,“ Physics Review 28 A, 1983.

signal 1/f noise.

Calculate differences between two numbers lp.delta
Pro Bundles only

— 1 — 17 March, 2003

Input

Arguments

0utput

Examples

Lp.delta provides all the difference you could want.

int An int in either inlet calculates the differences (left - right, right - left, and absolute
difference), sending the result through the three outlets.

float A float in either inlet calculates the differences (left - right, right - left, and absolute
difference), sending the result through the three outlets. If at least one
initialization argument was a float, all calculations will be performed in floating
point and the result will be sent through the outlets as floats. Otherwise any
incoming floats will be truncated to an integer value before the subtraction is
performed

bang Send last difference calculated through the outlets.

set The symbol set followed by a number updates the value associated with the inlet
to be updated without sending the resulting differences through the outlets.

list You can send a list of two numbers (floats or ints) to the left inlet. The first number
will be sent to the left inlet, the second number to the right inlet. The differences
are only calculated and sent through the outlets once.

int
float

The number of initialization arguments determines the intial values of the inlet
and the type of calculation (integer of floating point)..

If there are no initialization arguments both inlets are initialized to zero. If there
is one argument, it initializes the value stored at the first inlet. Specify two
arguments to initialize the values stored at both inlets.

If any of the initialization arguments is a float, then all calculation will be
performed in floating point and the result will be sent through the outlet as a float.
Otherwise all calculations will be performed with integers and floats arriving at
the inlets will be truncated.

int
float

The outlets, from left to right, are: right inlet subtracted from left inlet; left inlet
subtracted from right inlet; absolute difference.

The type of value (int or float) depends upon the initialization arguments.

17 March, 2003 — 2 —

lp.delta
Pro Bundles only

Calculate differences between two numbers

I got tired of having to include trigger objects to get the effect I wanted.

What’s in a name?

Name of the Greek letter used to represent differences.

See Also

- Subtract two numbers
abs Absolute value
lp.sigma Calculate differences between two numbers
lp.logos Calculate quotient and remainder of two numbers
lp.pi Multiply numbers
trigger Sends its input to many places, in right-to-left order

17 March, 2003 — 8 —

lp.gsss~
Pro Bundles

Gaussian noise

Noise source with Gaussian distribution. When used as a dither signal, the result is slightly less
rough than lp.trrr~. This external is, however, computationally more expensive. Also, the output
signal is not bounded, although it is extremely rare for samples with more than about ±3 times the
standard deviation to be produced.

Input

Argument

You can initialize an lp.gsss~ object with up to two optional arguments. You must specify the first
argument if you want to specify the second.

0utput

Examples

Adding dither can take the edge off signals originally sampled with low resolution.

float In left inlet: set the mean (central) value of the Gaussian distribution. This is
effectively a DC offset to the signal.

In the right inlet: set the standard deviation of the Gaussian distribution. This is
effectively a scaling factor.

signal In left inlet: override the mean of the Gaussian distribution. This is a simple way
of adding Gaussian noise to the incoming signal

In right inlet: override the standard deviation of the Gaussian distribution. This is
an unusual thing to do in dithering applications, but you are welcome to use this
feature as you see fit.

float First argument: initial mean. Default: zero.

Second argument: initial standard deviation. Default: 0.40828, . This is the

same standard deviation as produced by an unscaled triangular noise signal.

signal Gaussian noise

1
6

Gaussian noise lp.gsss~
Pro Bundles

— 9 — 17 March, 2003

What’s in a name?

Named after the famous mathematician.

See Also

lp.nn~ G3nral-purpoz s!gnl degrd8!on: rduz kap!talizt resolut!on | d!ther | m0d!fy faz!st
smpl-r8

lp.norm Generate random numbers using the Tausworthe 88 algorithm
lp.pfff~ Brown noise
lp.phhh~ Black noise
lp.pvvv~ Colored noise with variable Hurst exponent
lp.sss~ Pink noise (Gardner/Voss algorithm)
lp.trrr~ Triangular (dither) noise
lp.zzz~ Pink noise (McCartney algorithm)

Calculate quotient and remainder of two
numbers

lp.logos
Pro Bundles only

— 1 — 17 March, 2003

Input

Arguments

0utput

Examples

Lp.logos in action.

int An int in either inlet calculates the quotient and remainder of two numbers,
sending the quotient through the left outlet and the remainder through the right
outlet.

float A float in either inlet calculates the quotient and remainder of two numbers. If at
least one initialization argument was a float, the calculations will be performed in
floating point and the results will be sent through the outlets as floats. Otherwise
any incoming floats will be truncated to an integer value before the division is
performed

bang Send last quotient and remainder calculated through the outlets.

set The symbol set followed by a number updates the value associated with the inlet
to be updated without sending the resulting values through the outlets.

list You can send a list of two numbers (floats or ints) to the left inlet. The first number
will be sent to the left inlet, the second number to the right inlet. The quotient and
remainder are calculated and sent through the outlets once.

int
float

The number of initialization arguments determines the initial values of the inlet
and the type of calculation (integer of floating point).

If there are no initialization arguments both inlets are initialized to one. If there is
one argument, it initializes the value stored at the first inlet. Specify two
arguments to initialize the values stored at both inlets.

If any of the initialization arguments is a float, then all calculation will be
performed in floating point and the result will be sent through the outlet as a float.
Otherwise all calculations will be performed with integers and floats arriving at
the inlets will be truncated.

Yes, Virginia: the remainder (modulo) for floating point values is calculated.

int
float

The quotient of the left inlet divided by the right inlet is sent through the left
outlet. The remainder is sent through the right outlet.

The type of value (int or float) depends upon the initialization arguments.

17 March, 2003 — 2 —

lp.logos
Pro Bundles only

Calculate quotient and remainder of two
numbers

We can do both integer and floating point. Remainder in floating point, too!

What’s in a name?

Since mathematicians have not adopted a Greek letter to represent division, I took the Greek word
for quotient (or ratio).

ʼΕν $ρχ' (ν) λóγος, καì) λóγος (ν πρòς τòν θεóν, καì θεòς (ν) λóγος... πáντα διʼ α6το7
8γéνετο, καì χωρìσ α6το7 8γéνετο ο6δè ;ν.

Kata Iwannen

See Also

/ Divide two numbers
% Modulo
fmod Modulo
lp.delta Calculate ratios
lp.sigma Calculate differences
lp.pi Multiply numbers
trigger Sends its input to many places, in right-to-left order

17 March, 2003 — 10 —

lp.lya
Pro Bundles only

Calculate Lyapunov exponent for population
growth models

The Lyapunov exponent is a measure of how chaotic a dynamic system is. Negative values
indicate a stable system and positive values indicate chaotic behavior.

Calculation of the Lyapunov exponent for arbitrary dynamic systems can be quite complex, but
there is a relatively simple algorithm for approximating the value for dynamic systems based on
the simple population growth model (see lp.poppy for further details on this model). The
algorithm involves calculating several thousand iterations of the population growth, so it’s not
exactly computationally cheap.

Lp.lya is particularly interesting for population growth models which cycle through multiple
growth rates. See lp.lya.help for musical and visual examples. The self-similarity of Lyapunov
spaces is particularly apparent in two-dimensional images (see the example below).

Input

Arguments

0utput

bang Send the value of the Lyapunov exponent for the current population growth
model out the outlet.

float In the left inlet sets the growth rate, calculates the Lyapunov exponent, and sends
the result out the outlet. Input values are clipped to the range 0 ≤ r ≤ 4v

list This is where lp.lya gets interesting.

You can send a list of floats to the left inlet thereby defining a cycle of growth
rates. The Lyapunov exponent is calculated and sent out the outlet. All values in
the list are clipped to the range 0 ≤ r ≤ 4.

int An integer in the right inlet specifies the precision with which the Lyapunov
exponent is estimated.The value, multiplied by one thousand, is the number of
iterations of the population growth model that must be calculated. Default is one,
which is also the minimum value. Non-positive input resets this to the default.

int Optional. Initial value for precision. Default is one.

float The Lyapunov exponent of the current population growth model.

Calculate Lyapunov exponent for population
growth models

lp.lya
All Bundles

— 11 — 17 March, 2003

Examples

Images generated by lp.lya. Pixels representing chaotic parameters for the underlying population growth
model are rendered in black; other pixels are colored according to how stable the growth model is at that

point. The image at the right is a magnification of the lower-right quadrant of the image at the left.

Traversing a three-dimensional Lyapunov space with lp.lya to generate MIDI data.

17 March, 2003 — 12 —

lp.lya
Pro Bundles only

Calculate Lyapunov exponent for population
growth models

What’s in a name?

Clipped from the name of the venerable Alexander Mikhailovich Lyapunov.

See Also

lp.poppy Simple population growth model.
lp.poppy~ Simple population growth model as signal.

Dewdney, A. Kee. “Mathematical recreations: Leaping into Lyapunov Space,” Scientific American.
1991 (CCLXV:3) pp. 130-132.

Markus, Mario. “Chaos in maps with continuous and discontinuous maxima,” Computers in
Physics, 1990 pp. 481-493.

G3nral-purpoz s!gnl degrd8!on: rduz kap!talizt
resolut!on | d!ther | m0d!fy faz!st smpl-r8

lp.nn~
All Bundles

— 13 — 17 March, 2003

This object is an extended implementation of the nn factor, provided with many of the Litter
Power noise generators. In addition to reducing sample resolution, lp.nn~ also allows you to add a
dither component to the least-significant bits. While we're at it, we've added sample-rate
reduction.

Although in many ways similar to the degrade~ object, there are subtle differences in the
processing. These become increasingly noticeable when scaling signals before or after processing.
We are rather chaffed about the dither business, not to mention fractional bit-resolution.

Input

Arguments

0utput

signal In left inlet: signal to degrade.

int
float

In middle inlet: nn factor. Positive values degrade bit resolution, with maximum
degradation at nn = 31 (effectively one bit of signal). Negative values overwrite
low-order bits with dithering noise; maximum noise is reached at nn = -31. All nn
values in the range -1 ≤ nn ≤ 1 leave the signal unaltered.

Other NN values close to zero generally do not produce much audible
degradation, but rest assured that degradation is, indeed, taking place. This will
become clear when applied to very low-energy signals to which high gain is
subsequently applied.

The floating-point NN factor allows for smooth transitions between the integer
bit-resolution values. This feature is still somewhat experimental, and
implementation details may be modified in the future.

float In right inlet: effective sample rate in Hz. If set to zero or a value higher than the
current sampling rate, no down-sampling takes place. For values between zero
and the current sampling rate, samples from the incoming signal are repeated
(skipping incoming samples as needed) to emulate a signal sampled at the lower
rate.

int Optional first argument: sets initial NN factor. Zero by default.

float Optional second argument: sets initial effective sample rate. Zero by default (i.e.,
no down-sampling).

signal Degraded signal.

17 March, 2003 — 14 —

lp.nn~
All Bundles

G3nral-purpoz s!gnl degrd8!on: rduz kap!talizt
resolut!on | d!ther | m0d!fy faz!st smpl-r8

Examples

Degrading a low-frequency signal.

What’s in a name?

A token of esteem for a dear friend.

See Also

degrade~ If you have to ask why, you probably don’t need this object.
lp.gsss~ G3nral-purpoz s!gnl degrd8!on: rduz kap!talizt resolut!on | d!ther | m0d!fy faz!st

smpl-r8
lp.pfff~ Brown noise
lp.phhh~ Black noise
lp.pvvv~ Colored noise with variable Hurst exponent
lp.shhh~ White noise
lp.sss~ Pink noise (Gardner/Voss algorithm)
lp.trrr~ Triangular (dither) noise
lp.zzz~ Pink noise (McCartney algorithm)

Generate random numbers with a

1/f3 (black) distribution
lp.phhh

Pro Bundles

— 15 — 17 March, 2003

This is a control-domain version of the lp.phhh~ black noise signal generator. It generates values
in the range 0 ≤ x ≤ 1.

Input

Arguments

0utput

Examples

Generating random numbers with a 1/f3 distribution.

bang Generate a random value from a “black” (1/f3) distribution.

seed The symbol seed followed by an integer reseeds the internal random number
generator. (Only available if the object was initialized with a seed parameter.)

int In second inlet: sets the NN factor. This is a value in the range 0 ≤ nn ≤ 31 that
controls the "granularity" of the random numbers. For a NN factor of zero (the
default), all bits of the random numbers are random. For other values, NN
indicates the number of low-order bits to mask out before converting to a floating-
point value.

inst Set the value for the seed of the core random number generator. The generator is
auto-seeded if this value is zero (the default).

float A random value in the range 0 ≤ x ≤ 1.

17 March, 2003 — 16 —

lp.phhh
Pro Bundles

Generate random numbers with a
1/f3 (black) distribution

What’s in a name?

See lp.phhh~

See Also
lp.grrr "Gray" noise (control domain)
lp.pfff Generate random numbers from a Brownian distribution
lp.phhh~ "Black" (1/f3) noise
lp.shhh Generate random numbers from a "white" distribution
lp.sss Generate random numbers from a 1/f ("pink") distribution
lp.tata Generate random numbers using the Tausworthe 88 algorithm
lp.titi Generate random numbers using the TT800 algorithm
lp.zzz Generate random numbers from a 1/f ("pink") distribution

Multiply numbers lp.pi
Pro Bundles only

— 1 — 17 March, 2003

Input

Arguments

0utput

Examples

Lp.pi can multiply as many numbers as you want.

int An int in any inlet causes the product of values currently at all inlets to be
calculated and sent through the outlet.

float A float in any inlet causes the product of values currently at all inlets to be
calculated and sent through the outlet. If at least one initialization argument was
a float, all calculations will be performed in floating point and the result will be
sent through the outlet as a float. Otherwise any incoming floats will be truncated
to an integer value before the addition is performed

bang Send last sum calculated through outlet

set The symbol set followed by a number updates the value associated with the inlet
to be updated without sending the resulting sum through the outlet.

list You can send a list of numbers (floats or ints) to any inlet. The first number will
be sent to the receiving inlet, the second number to the following inlet on the right,
and so on. After the numbers have been distributed, the new product of all inlets
is calculated and sent through the outlet.

int
float

The number of initialization arguments determines the number of inlets, their
initial values, and the type of calculation (integer of floating point)..

If there are no initialization arguments, lp.pi will have two inlets, both initialized
to one. If there is one argument, it initializes the value stored at the first inlet.
Specify two arguments to initialize the values stored at both inlets. If there are
three or more arguments, there will be the same number of inlets as arguments
and the inlets will take initial values as specified.

If any of the initialization arguments is a float, then all calculation will be
performed in floating point and the result will be sent through the outlet as a float.
Otherwise all calculations will be performed with integers and floats arriving at
the inlets will be truncated.

int
float

The current sum. The type of value (int or float) depends upon the initialization
arguments

17 March, 2003 — 2 —

lp.pi
Pro Bundles only

Multiply numbers

I got tired of having to include trigger objects to get the effect I wanted.

What’s in a name?

Name of the Greek letter used to represent multiplication.

See Also

* Multiply two numbers
lp.delta Multiply numbers
lp.logos Calculate quotient and remainder of two numbers
lp.sigma Add numbers
trigger Sends its input to many places, in right-to-left order

17 March, 2003 — 18 —

lp.poppy
All Bundles

Simple population growth model

Generate sequences of values in the range 0 < x < 1 using the interative formula:

P is in the range 0 ≤ p ≤ 1, r can take on values in the range 0 ≤ r ≤ 4.

This iterative formula is often used to model population growth under the assumption that there is
some theoretical maximum population, limited by availability of food or other constraints which
are assumed to be constant. Under this model, p represents the current population as a fraction of
the maximum population and r represents the growth rate in each period of growth (for instance, a
year). The model assumes that, as the population becomes large, it will die off at faster rates due to
scarcity of food (or to other constraints). This is reflected in the multiplication of the current
population, p, with (1-p).

If the growth rate is less than two, the population will eventually die off. Growth rates between
two and three lead to constant population levels. Starting at growth rates of three, the population
will alternate between two different levels. The two levels get further and further apart as the
growth rate increases. When the growth rate exceeds 3.43, the population pattern bifurcates again
to alternate between four different levels. With increasing growth rates the population behavior
becomes increasingly complex. Once the growth rate reaches 3.569946 the population behavior
becomes chaotic.

Input

bang Generate next population level and send it out the outlet.

float In the left inlet sets the growth rate, generates the next population value, and
sends the result out the outlet. Input values are clipped to the range 0 ≤ r ≤ 4

In the right inlet sets the current population level.Input values are clipped to the
range 0 ≤ p ≤ 1.

list I think this is cool.

You can send a list of floats to the left inlet. Then lp.poppy will cycle through the
values of the list, using them as changing growth rates on each bang.Like sending
a single float, the next population level is calculated and send out the outlet.

set The symbol set followed by one or more floats sets the population growth pattern
without generating the next population level. Nothing is sent out the outlet.

reset Set the population level back to the initial population (or the last value specified
in the right outlet).

p' rp 1 p–()=

Simple population growth model lp.poppy
All Bundles

— 19 — 17 March, 2003

Arguments

0utput

Examples

Population rate of 3 in the righthand portion of the multiSlider, 3.569946 in the middle, and 3.86 at the left.

What’s in a name?

In honor of Madam Pomfrey, who does her best to maintain the population level of her charges.

See Also

lp.lya Calculate Lyapunov exponent for population growth models.
lp.poppy~ Simple population growth model as signal.

Dewdney, A Kee. “Computer recreations: Probing the strange attractions of chaos,” Scientific
American 1987 (CCLXXXVII:1) pp. 90-93

Glieck, James. Chaos: The Making of a New Science. Penguin, New York, 1987.

Li, Tien-Yien and James Yorke. “Period three implies chaos” American Mathematical Monthly,
1975 (LXXXII) pp. 985-992.

float Optional. As many float values as you want.

If only one float is given, it specifies the initial growth rate.

If two floats are given, the first one specifies the initial growth rate and the second
one specifies the initial population level.

If more floats are given, the last one specifies the initial population level and the
rest define a cycle of growth rates.

If no values are given, lp.poppy defaults to an initial population levelof 2/3 and a
growth rate of 3.569946.

float The next population level.

17 March, 2003 — 20 —

lp.poppy~
All Bundles

Simple population growth model as signal

Generate audio signals using the chaotic population growth iteration formula.

Think of this object as a cross between lp.poppy and lp.frrr~.

Input

Arguments

Up to three floats followed by an int. All arguments are optional. You must specify the first
argument if you want to specify the second; similarly for the third and fourth arguments.

0utput

float In the left inlet sets the growth rate. Input values are clipped to the range 0 ≤ r ≤ 4

In the middle inlet sets the current population level.Input values are clipped to the
range 0 ≤ p ≤ 1.

In the right inlet sets the base frequency. Note that the actual frequency used may
be adjusted by lp.poppy~ to match an integral sub-harmonic of the sampling rate.

signal In the left inlet: the growth rate can be controlled by a signal.

int In the right inlet: zero, one, two, or minus one. Zero indicates no interpolation
between generated values, one indicates linear interpolation, a value of two
indicates quadratic interpolation, and minus one indicates geometric
interpolation. Any other negative values are treated as minus one; values larger
than two are clipped.

reset Sets the population level back to the initial population (or the last value specified
in the middle outlet. Useful if the signal has degenerated, which can happen in
somewhat unusual circumstances.

float The first argument specifies the initial growth rate. The default value is
3.56994571869. (Yes, the default value is double-precision, the internal arithmetic
is performed with double-precision throughout.).

The second argument specifies the initial (“seed”) population. The default value
is the smallest positive number that can be represented as a single-precision
floating point value. (Why single-precision here? You’ll be bored if I go into the
details.).

The third argument specifies an (approximate) initial setting in Hz for the base
frequency at which new population values are generated. The default value is the
sampling rate (ie, a new population value is generated every sample).

int The fourth argument specifies an initial value for interpolation, which should be
either zero, one, or two. The default value is zero (no interpolation).

signal The population level.

Simple population growth model as signal lp.poppy~
Pro Bundles only

— 21 — 17 March, 2003

Examples

Signal as population growth rate goes from one to four.

What’s in a name?

See lp.poppy.

See Also

lp.frrr~ Low frequency noise generator.
lp.lya Calculate Lyapunov exponent for population growth models.
lp.poppy Simple population growth model.

17 March, 2003 — 22 —

lp.pvvv
Pro Bundles

Colored noise with variable Hurst
exponent

This is a control-domain version of the lp.pvvv~ variable-color noise signal generator. It generates
values in the range 0 ≤ x ≤ 1.

The “color” (or “persistance”) of the random numbers generated is controlled by a Hurst Exponent.
A Hurst Exponentof 0 generates a 1/f distribution (pink noise), 0.5 generates a 1/f2 distribution
(brown noise), and 1 generates a 1/f3 distribution (black noise). You can experiment with values in
between and beyond…

Input

bang Generate a random value from a “colored” distribution.

float In left inlet: set the Hurst Exponent. This is normally a value in the range 0 ≤ h ≤
1, but values outside the range can be handled by lp.pvvv. Values larger than one
produce random numbers with very little local variation

NB: In the current implementation, negative values for the Hurst Exponent
sometimes produce results that do not match the mathematical model, due to
arithmetic overflow in intermediate calculations. This issue will be dealt with in a
future version of lp.pvvv. Please be aware that the characteristics of the random
numbers generated for negative Hurst Exponents may change in future..

int In second inlet: sets the NN factor. This is a value in the range 0 ≤ nn ≤ 31 that
controls the "granularity" of the random numbers. For a NN factor of zero (the
default), all bits of the random numbers are random. For other values, NN
indicates the number of low-order bits to mask out before converting to a floating-
point value.

seed The symbol seed followed by an integer reseeds the internal random number
generator. (Only available if the object was initialized with a seed parameter.)

Colored noise with variable Hurst
exponent

lp.pvvv
Pro Bundles

— 23 — 17 March, 2003

Arguments

You can initialize an lp.pvvv object with up to four optional arguments. You must specify the first
argument if you want to specify the second argument , and so on. The arguments, in order, are:

0utput

Examples

Generating random numbers with a distribution half way between pink and brown noise.

int Length of cycle, which must be a power of two. Lp.pvvv precalculates this number
of random numbers in advance, and the “color” of the distribution applies, strictly
speaking, only to the distribution over one cycle. So, longer cycles give a more
“accurate” long-term distribution. However, longer cycles require more memory
and also mean a greater latency between the time the Hurst Exponent is changed
and when

The default cycle is 512; this has proven to be a good practical value for most
applications. If you specify zero or a negative number for this argument, the
default will be used. Any arguments that are not powers of two are rounded
down to the next power of two. The maximum value for this argument is limited
only by available memory.

float Set initial value of Hurst Exponent. The default is zero (i.e., pink noise)

int Set an initial value for the NN factor. The default is zero.

int Set the value for the seed of the core random number generator. The generator is
auto-seeded if this value is zero (the default).

float A random value in the range 0 ≤ x ≤ 1.

17 March, 2003 — 24 —

lp.pvvv
Pro Bundles

Colored noise with variable Hurst
exponent

What’s in a name?

See lp.pvvv~

See Also

lp.scampi Scale, offset, and limit numbers; output integers
lp.grrr "Gray" noise (control domain)
lp.pfff Generate random numbers from a 1/f2 (“Brownian”) distribution
lp.pvvv~ Colored noise with variable Hurst exponent
lp.scampi Scale, offset, and limit numbers; output integers
lp.shhh Generate random numbers from a “white” distribution
lp.sss Generate random numbers from a 1/f (“pink”) distribution (Voss/Gardner

algorithm)
lp.zzz Generate random numbers from a 1/f (“pink”) distribution (McCartney

algorithm)
lp.tata Generate random numbers using the Tausworthe 88 algorithm

Colored noise with variable Hurst
exponent

lp.pvvv~
Pro Bundles

— 25 — 17 March, 2003

The “color” (or “persistance”) of the noice produced is controlled by a Hurst Exponent. A Hurst
Exponentof 0 generates a 1/f distribution (pink noise), 0.5 generates a 1/f2 distribution (brown
noise), and 1 generates a 1/f3 distribution (black noise). You can experiment with values in
between and beyond…

Input

NB: In the current implementation, negative values for the Hurst Exponent sometimes produce
results that do not match the mathematical model, due to arithmetic overflow in intermediate
calculations. This issue will be dealt with in a future version of lp.pvvv~. Please be aware that the
characteristics of the noise signal for negative Hurst Exponents may change in future.

Arguments

You can initialize an lp.pvvv~ object with up to two optional arguments. You must specify the first
argument if you want to specify the second.

0utput

Examples

Playing noise colors from a MIDI keyboard.

float In left inlet: set the Hurst Exponent. This is normally a value in the range 0 ≤ h ≤
1, but values outside the range can be handled by lp.pvvv~. Values larger than one
produce very low-frequency noise; negative values produce high energy signals.

int In right inlet: sets the NN factor. This is a value in the range 0 ≤ nn ≤ 31 that
controls the "granularity" of the random numbers. For a NN factor of zero (the
default), all bits of the random numbers are random. For other values, NN
indicates the number of low-order bits to mask out before converting to a floating-
point value.

float Set initial value of Hurst Exponent. The default is zero (i.e., pink noise)

int Set an initial value for the NN factor. The default is zero.

signal Colored noise.

17 March, 2003 — 26 —

lp.pvvv~
Pro Bundles

Colored noise with variable Hurst
exponent

What’s in a name?

Onomatopoeia.

See Also
lp.grrr "Gray" noise (control domain)
llp.pfff~ "Brownian" (1/f2) noise
p.phhh~ Black (1/f3) noise
lp.shhh~ White noise
lp.sss~ Pink (1/f) noise (Voss/Gardner algorithm)
lp.zzz~ Pink (1/f) noise (McCartney algorithm)

Add numbers lp.sigma
All Bundles

— 1 — 17 March, 2003

Input

Arguments

0utput

Examples

Lp.sigma can add as many numbers as you want.

int An int in any inlet causes the sum of values currently at all inlets to be calculated
and sent through the outlet.

float A float in any inlet causes the sum of values currently at all inlets to be calculated
and sent through the outlet. If at least one initialization argument was a float, all
calculations will be performed in floating point and the result will be sent through
the outlet as a float. Otherwise any incoming floats will be truncated to an integer
value before the addition is performed

bang Send last sum calculated through outlet

set The symbol set followed by a number updates the value associated with the inlet
to be updated without sending the resulting sum through the outlet.

list You can send a list of numbers (floats or ints) to any inlet. The first number will
be sent to the receiving inlet, the second number to the following inlet on the right,
and so on. After the numbers have been distributed, the new sum of all inlets is
calculated and sent through the outlet.

int
float

The number of initialization arguments determines the number of inlets, their
initial values, and the type of calculation (integer of floating point)..

If there are no initialization arguments, lp.sigma will have two inlets, both
initialized to zero. If there is one argument, it initializes the value stored at the first
inlet. Specify two arguments to initialize the values stored at both inlets. If there
are three or more arguments, there will be the same number of inlets as arguments
and the inlets will take initial values as specified.

If any of the initialization arguments is a float, then all calculation will be
performed in floating point and the result will be sent through the outlet as a float.
Otherwise all calculations will be performed with integers and floats arriving at
the inlets will be truncated.

int
float

The current sum. The type of value (int or float) depends upon the initialization
arguments

17 March, 2003 — 2 —

lp.sigma
All Bundles

Add numbers

I got tired of having to include trigger objects to get the effect I wanted.

What’s in a name?

Name of the Greek letter used to represent summation.

See Also

+ Add two numbers
lp.delta Calculate differences between two numbers
lp.logos Calculate quotient and remainder of two numbers
lp.pi Multiply numbers
lp.stacey Collect statistics
trigger Sends its input to many places, in right-to-left order

Triangular (dither) noise lp.trrr~
All Bundles

— 27 — 17 March, 2003

Noise with a triangular distribution is frequently used for dithering.

Input

Arguments

0utput

Examples

Adding dither can take the edge off signals originally sampled with low resolution.

int Sets the NN factor, specifying the number of low-order bits to clear before
converting the integer representation to floating-point. The NN factor may be in
the range 0 ≤ nn ≤ 31.

Since lp.trrr~ is typically used to counteract effects that resemble the NN factor, it
may seem a little odd to NN-ize this object, but why not?

int Optional value sets an initial NN factor

signal Dithering noise.

17 March, 2003 — 28 —

lp.trrr~
All Bundles

Triangular (dither) noise

What’s in a name?

Trrriangular noise.

See Also

lp.gsss~ Gaussian noise.
lp.nn~ G3nral-purpoz s!gnl degrd8!on: rduz kap!talizt resolut!on | d!ther | m0d!fy faz!st

smpl-r8

	Litter Power Thesaurus
	lp.ccc
	lp.ccc~
	lp.delta
	lp.gsss~
	lp.logos
	lp.lya
	lp.nn~
	lp.phhh
	lp.pi
	lp.poppy
	lp.poppy~
	lp.pvvv
	lp.pvvv~
	lp.sigma
	lp.trrr~

